Correlative light electron microscopy (CLEM)
The Wolfson Bioimaging Facility is specifically equipped to combine light and electron microscopy and to undertake CLEM experiments. By utilising the advantages of fluorescence microscopy (e.g. live cell imaging) with the higher resolution and contextual information which EM provides, CLEM can deliver considerably more information than either modality alone.
We have a range of equipment designed to enable CLEM workflows. The specialised nature and complexity of CLEM experiments means that many projects using this equipment have involved collaboration with Prof. Paul Verkade who has extensive expertise in the development and application of CLEM technologies.
The Wolfson Bioimaging Facility is also home to the EMBO practical course on Correlative Light Electron Microscopy. This international course provides participants with the theoretical basis and hands on experience of a wide variety of CLEM techniques.
Recent papers including CLEM data:
- Baines, Yoshioka, Takuwa, Lane (2022) The ATG5 interactome links clathrin-mediated vesicular trafficking with the autophagosome assembly machinery. Autophagy Reports 1: 88-118
- Galloway, Bray, Shoemark, Hodgson, Coombs, Mantell, Rose, Ross, Morris, Harniman, Wood, Arthur, Verkade, Woolfson (2021) De novo designed peptide and protein hairpins self-assemble into sheets and nanoparticles. Small 17:e2100472
- Street, He, Jin, Hodgson, Verkade, Manners (2020) Cellular uptake and targeting of low dispersity, dual emissive, segmented block copolymer nanofibers. Chemical Science doi.org/10.1039/D0SC02593C
- Paul, Mantell, Borucu, Coombs, Surridge, Squire, Verkade, Dodding (2020) In situ cryo-electron tomography reveals filamentous actin within the microtubule lumen. Journal of Cell Biology 219: e201911154
- van den Berg, MacCarthy-Morrogh, Carter, Morris, Bravo, Feng, Martin (2019) Proteolytic and opportunistic breaching of the basement mebrane zone by immune cells during tumor initiation. Cell Reports 27: 2837-46