View all news

Patient-specific cancer tumours replicated in 3D bioprinting advance

Press release issued: 2 November 2022

Bowel cancer patients could in future benefit from a new 3D bioprinting technology which would use their own cells to replicate the complex cellular environment of solid tumours in 3D models. The University of Bristol-led advance, published in Biofabrication, would allow clinicians to treat the models, known as spheroids, with chemotherapy drugs and radiation to help them understand an individual patient’s resistance to therapies.

In this new study, researchers developed a new 3D bioprinting platform with high content light microscopy imaging and processing. Using a mixture of bioinks and colorectal (bowel) cancer cells, the team show they were able to replicate tumours in 3D spheroids. 

To investigate how the tumours might respond to drugs, dose-response profiles were generated from the spheroids which had been treated separately with chemotherapy drugs oxaliplatin (OX), fluorouracil (5FU), and radiotherapy. The spheroids were then imaged over time. Results from their experiment showed oxaliplatin was significantly less effective against tumour spheroids than in current 2D monolayer culture structures, when compared to fluorouracil. 

Read the full University of Bristol news item

Paper: A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug- and radiation-response by Adam W. Perriman et al. in Biofabrication

Edit this page