View all news

Stopping the spread of coronavirus in universities

14 September 2020

As universities prepare to welcome students back, infectious disease modelling experts at the University of Bristol have conducted a rapid review and developed a new epidemic model which contributed to evidence considered by SAGE to assess the effectiveness of different interventions that could stop the spread of Sars-CoV-2 in a university setting. The findings, published on the preprint server medRxiv, provides the sector with recommendations to help reduce the risk for students, staff and the wider community.

This month, thousands of university students are due to start the 2020/21 academic term and will arrive on campus from across the UK and internationally.  As COVID-19 continues to circulate around the globe, universities are actively developing plans to keep students, staff and the wider community safe, while providing a high-quality student experience. 

The team, led by Drs Ellen Brooks-Pollock and Hannah Christensen from the NIHR Health Protection Research Unit in Behavioural Science and Evaluation at the University of Bristol and part of Bristol UNCOVER, conducted a rapid review of mathematical modelling studies looking at how coronavirus might spread in a university setting and what mitigation strategies could be most useful in helping to reduce it.

The team reviewed five studies, four from the US and one from the UK, and developed a new, detailed epidemic model based on UK student data. Their investigations considered testing, contact tracing, quarantine strategies, and other non-pharmaceutical interventions.

Their analyses provided the following recommendations to policy makers and the higher education sector:

  • Multiple interventions will be required to enable universities to respond quickly to any evolving increases in Sars-CoV-2 cases, which include reducing peoples’ contacts (within residences and across the university community), effective testing, tracing and quarantine of individuals.
  • Students and staff will need to closely adhere to the national guidance around social distancing and hand washing, and will need clear advice on what to do if they are symptomatic or asked to quarantine to help avoid large number of cases in the university community.
  • Policies aimed at reducing how many people individuals come into contact with, and the risk of transmission during any face-to-face contacts, are critical.  This could include moving teaching online, social distancing, and the correct use of face coverings.
  • Limiting contacts, with reduced face-to-face teaching and reducing the size of living circles, was the single most effective control option.
  • If mass testing is used, it needs to be frequent, with persons without symptoms being tested weekly or more often.

Dr Hannah Christensen, Senior Lecturer in Infectious Disease Mathematical Modelling in Bristol Medical School, said: "Mathematical models are currently being used to help understand the evolving COVID-19 pandemic and to inform prevention and control strategies.  Many UK universities are planning for students to return to campus in autumn 2020 in a blended teaching model, for example with large lectures replaced with online teaching and small group practical classes, delivered with social distancing measures in place. Other UK universities are considering alternative teaching models, including some planning full online learning for at least the first term.

"In the absence of a vaccine, managing COVID-19 within a university setting presents unique challenges. However, our results have shown certain interventions can be effective.  Minimising face-to-face contacts and lowering the risk of virus transmission when people do meet, through physical distancing, the use of face coverings and good hand hygiene, all help reduce the spread.  Testing, with contact tracing and quarantining, also plays a critical part in controlling outbreaks."

Dr Ellen Brooks-Pollock, Senior Lecturer in Veterinary Public Health and Infectious Disease Modelling at the University of Bristol, added: "Our findings clearly show that multiple mitigation interventions are needed to help universities respond effectively to any increase in cases. Some interventions can be implemented with limited additional resources, others, such as mass testing would require additional capacity. Mass testing of all students could be effective but is dependent on regular testing and effective self-isolation. In addition, there are big data gaps that need to be filled in order to characterise transmission in this population, such as how infectious cases with mild symptoms are."

The studies were funded by National Institute for Health Research (NIHR) and the University of Bristol.


'COVID-19 transmission in a university setting: a rapid review of modelling studies' by Hannah Christensen, Ellen Brooks-Pollock et al in medRxiv

High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions’ by Ellen Brooks-Pollock, Hannah Christensen et al in medRxiv

Updated 17 August 2021: ‘High COVID-19 transmission potential associated with re-opening universities can be mitigated with layered interventions’ is published in Nature Communications.

Please note these are preprints, so are preliminary pieces of research that have not yet been through peer review and have not been published in a scientific journal – so this is early data.

Further information

About the NIHR
The National Institute for Health Research (NIHR) is the nation's largest funder of health and care research. The NIHR:

  • funds, supports and delivers high quality research that benefits the NHS, public health and social care
  • engages and involves patients, carers and the public in order to improve the reach, quality and impact of research
  • attracts, trains and supports the best researchers to tackle the complex health and care challenges of the future
  • invests in world-class infrastructure and a skilled delivery workforce to translate discoveries into improved treatments and services
  • partners with other public funders, charities and industry to maximise the value of research to patients and the economy.

The NIHR was established in 2006 to improve the health and wealth of the nation through research, and is funded by the Department of Health and Social Care. In addition to its national role, the NIHR supports applied health research for the direct and primary benefit of people in low- and middle-income countries, using UK aid from the UK government.

About the NIHR Health Protection Research Unit in Behavioural Science and Evaluation at University of Bristol
The Health Protection Research Unit (HPRU) in Behavioural Science and Evaluation at University of Bristol is part of the National Institute for Health Research (NIHR) and a partnership between University of Bristol and Public Health England (PHE), in collaboration with the MRC Biostatistics Unit at University of Cambridge and University of the West of England. We are a multidisciplinary team undertaking applied research on the development and evaluation of interventions to protect the public’s health. Our aim is to support PHE in delivering its objectives and functions.

Follow us on Twitter: @HPRU_BSE

About the Bristol UNCOVER group
In response to the COVID-19 crisis, researchers at the University of Bristol formed the Bristol COVID Emergency Research (UNCOVER) Group to pool resources, capacities, and research efforts to combat this infection.

Bristol UNCOVER includes clinicians, immunologists, virologists, synthetic biologists, aerosol scientists, epidemiologists and mathematical modellers and has links to behavioural and social scientists, ethicists and lawyers and is supported by a large number of junior academic and administrative colleagues.

Follow Bristol UNCOVER on Twitter at:

For more information about the University of Bristol’s coronavirus (COVID-19) research priorities visit:

Bristol UNCOVER is supported by the Elizabeth Blackwell Institute
Find out more about the Institute’s COVID-19 research looking into five key areas: virus natural history, therapeutics and diagnostics research; epidemiology; clinical management; vaccines; and ethics and social science.

Support our COVID-19 research
Bristol's researchers are part of a global network of scientists responding urgently to the challenge of the coronavirus pandemic. 

Find out how you can support their critical work.

Edit this page