View all news

Powerful new synthetic vaccines to combat epidemics

Chikungunya infectious disease, spread by mosquito bites, causes extreme pain, incapacitation and potentially death.

Chikungunya infectious disease, spread by mosquito bites, causes extreme pain, incapacitation and potentially death

ADDomer: Synthetic multiepitope display scaffold for next generation vaccines

ADDomer: Synthetic multiepitope display scaffold for next generation vaccines. We developed ADDomer, a next generation synthetic vaccine that mimics features of Chikungunya virus, to efficiently prime the immune system to protect against this pathogen University of Bristol

Press release issued: 25 September 2019

A new type of vaccine that can be stored at warmer temperatures, removing the need for refrigeration, has been developed for mosquito-borne virus Chikungunya in a major advance in vaccine technology. The findings, published in Science Advances today [Wednesday 25 September], reveal exceptionally promising results for the Chikungunya vaccine candidate, which has been engineered using a synthetic protein scaffold that could revolutionise the way vaccines are designed, produced and stored.

Infectious diseases continue to plague populations worldwide. Among the means at our disposal to counter this threat, vaccination has proven to be exceptionally powerful. Smallpox has been eradicated, measles, polio and tetanus constrained from the world by vaccination. However, severe challenges to human health persist, evidenced by epidemics caused by Ebola, Zika and others. This is particularly severe in developing countries which often lack adequate infrastructure and resources to prevent or manage outbreaks, bringing about disruption and damage in affected communities and massive economic shortfall.

A recent example is Chikungunya, a virus transmitted by the bite of an infected mosquito. The disease causes crippling headache, vomiting, swelling of limbs and can lead to death. Even if a fever ends abruptly, chronic symptoms such as intense joint pain, insomnia and extreme prostration remain. Formerly confined to sub-Saharan Africa, Chikungunya has recently spread worldwide as its mosquito host leaves its natural habitat due to deforestation and climate change, with recent outbreaks in USA and Europe causing alarm.

Researchers from the University of Bristol and the French National Centre for Scientific Research (CNRS) in Grenoble, France, teamed up with computer technology giant Oracle to find a way to make vaccines that are thermostable (able to withstand warm temperatures), can be designed quickly and are easily produced.

"We were working with a protein that forms a multimeric particle resembling a virus but is completely safe, because it has no genetic material inside, said Pascal Fender, expert virologist at CNRS. "Completely by chance, we discovered that this particle was incredibly stable even after months, without refrigeration."

"This particle has a very flexible, exposed surface that can be easily engineered, added Imre Berger, Director of the Max Planck-Bristol Centre for Minimal Biology in Bristol. "We figured that we could insert small, harmless bits of Chikungunya to generate a virus-like mimic we could potentially use as a vaccine."

To validate their design, the scientists employed cryo-electron microscopy, a powerful new technique recently installed in Bristol’s state-of-the-art microscopy facility headed by Christiane Schaffitzel, co-author of the study. Cryo-EM yields very large data sets from which the structure of a sample can be determined at near atomic resolution, requiring massive parallel computing.

Enabled by Oracle's high-performance cloud infrastructure, the team developed a novel computational approach to create an accurate digital model of the synthetic vaccine. University of Bristol IT specialists Christopher Woods and Matt Williams, together with colleagues at Oracle, implemented software packages seamlessly on the cloud in this pioneering effort. Christopher explained: "We were able to process the large data sets obtained by the microscope on the cloud in a fraction of the time and at much lower cost than previously thought possible."

"Researchers have had a long tradition of building and installing their own super computers on-premises, but cloud computing is allowing them to run large data sets in record time, with fast connectivity and low latency. This is helping them crunch data and make scientific breakthroughs much faster. Going forward, technologies like machine learning and cloud computing will play a significant part in the scientific world, and we are delighted we could help the researchers with this important discovery," added Phil Bates, leading cloud architect at Oracle.

The particles the scientists designed yielded exceptionally promising results in animal studies, soundly setting the stage for a future vaccine to combat Chikungunya disease.

"We were thoroughly delighted," continued Imre Berger. "Viruses are waiting to strike, and we need to have the tools ready to tackle this global threat. Our vaccine candidate is easy to manufacture, extremely stable and elicits a powerful immune response. It can be stored and transported without refrigeration to countries and patients where it is most needed. Intriguingly, we can now rapidly engineer similar vaccines to combat many other infectious diseases just as well."

"It really ticks a lot of boxes," concluded Fred Garzoni, founder of Imophoron Ltd, a Bristol biotech start-up developing new vaccines derived from the present work. "Many challenges in the industry require innovative solutions, to bring powerful new vaccines to patients. Matching cutting-edge synthetic biology with cloud computing turned out to be a winner."

The authors would like to thank the Finovi Foundation, the Agence National de Recherche (ANR), the Elizabeth Blackwell Institute, the EPSRC, BBSRC, Wellcome Trust and GW4 for their support.


'Synthetic self-assembling ADDomer platform for highly efficient vaccination by genetically-encoded multi-epitope display' by Vragniau et al in Science Advances

Further information

Imre Berger is also Co-Director of the Bristol BioDesign Institute  which focuses on biomolecular design and engineering in synthetic biology.  He is co-founder of Imophoron Ltd and partner in the EPSRC Innovation Vaccine Manufacturing Hub. 

Key facts: (source: World Health Organisation)

  • Chikungunya is a viral disease transmitted to humans by infected mosquitoes. It causes fever, severe joint pain, chronic arthritis, fatigue and ad extremis death.
  • Recent Chikungunya outbreaks caused considerable human suffering and economic shortfall in affected communities.
  • The disease shares some clinical signs with dengue and zika which are spread by the same mosquito.
  • There is no cure or preventive vaccine. Treatment is focused on relieving the symptoms.
  • The disease mostly occurs in Africa, Asia and the Indian subcontinent. However, a major outbreak in 2015 affected several countries of the region of the Americas.
  • Due to climate change and deforestation, mosquitos leave the natural sub-Saharan habitat spreading the disease world-wide.

About the Max Planck-Bristol Centre for Minimal Biology
The Max Planck-Bristol Centre for Minimal Biology (MPBC), a partnership between the University of Bristol and the Max Planck Society for the Advancement of Science (MPG) in Germany, seeks to understand the foundations of life and how it arose from non-living matter by designing and building artificial cells, minimal genomes, virus-like nanodevices and new cellular scaffolds.

About the Bristol BioDesign Institute  
The Bristol BioDesign Institute (BBI) co-ordinates synthetic biology research, training and innovation across the University of Bristol. With wide-ranging applications from health to food security, BBI exploits pioneering approaches to deliver the rational design and engineering of biological systems for useful purposes, through multidisciplinary research which brings together postgraduate and postdoctoral researchers, academics, policy makers and industry, whilst also engaging the public with emerging solutions to global challenges.

About the electron cryo-microscope facility at Bristol
The GW4 alliance’s state-of-the-art facility for high-resolution electron cryo-microscopy provides access to cryo-microscopy and analysis tools to researchers from diverse disciplines across the Great West region (Bath, Bristol, Cardiff, Exeter) and beyond. The facility enables near-atomic study of molecular architectures in cell function using single particle cryo-EM or cryo-tomography, providing unique insights in mechanisms in health and disease. The facility received funding from the Wellcome Trust, the BBSRC and the GW4 alliance partner institutions.

About Imophoron Ltd – innovative vaccine company
Bristol start-up Imophoron’s ambition is to bring about a revolution in the fight against deadly pathogens and to tackle current challenges met by the vaccine industrywith Imophoron’s next-generation vaccine development platform. Imophoron won the 2019 Launch Great West Global Good Award.

About Oracle
The Oracle Cloud offers a complete suite of integrated applications for sales, service, marketing, human resources, finance, supply chain and manufacturing, plus highly automated and secure generation 2 infrastructure featuring the Oracle Autonomous Database. For more information about Oracle (NYSE: ORCL), visit

About the Elizabeth Blackwell Institute
The Elizabeth Blackwell Institute for Health Research is building a dynamic community of researchers from our health and non-health related disciplines to find innovative solutions for some of the most pressing health challenges of the 21st century.  The Institute will achieve this through encouraging new ways of working, and also through fostering collaborative approaches between scientists, industry, clinical practitioners and patients.

Edit this page