Social Science Research on Antimicrobial Resistance

Medical Impact of Antimicrobial Resistance

Alasdair MacGowan Lead Public Health Microbiologist - National Infection Service SW, PHE Professor of Antimicrobial Therapeutics, University of Bristol Consultant in Infection North Bristol NHS Trust (Lead for Sepsis Management and Antimicrobial Stewardship)

Impact of antimicrobial resistance

- Infection is more difficult to treat in individual patients and outcomes are worse
- > Antibiotics used to prevent infection are ineffective, i.e. post surgery
- > Infection control activities need to be increased to prevent further spread
- Costs are increased (length of stay, lab costs, drug costs etc)

What is antibiotic resistance?

- (1) phenotypic change in susceptibility compared to the normal bacterial population
- <u>or</u>
- (2) presence of a genotypic change which adversely impacts on susceptibility
- or
- (3) level of susceptibility likely to result in a higher than expected level of therapeutic failure

(1) and (2) are defined by "epidemiological cut offs (ECOFFS), and (3) is defined by "clinical breakpoint"

How can the impact of "resistance" be measured?

- mortality
- morbidity

- fever days
- resolution of WBC
- length of stay
- ICU admission/days
- reconsultation
- second courses of antibiotics
- pathogen persistence/increased resistance
- financial cost

Methodologies used:-

- prospective cohort or case control studies
- retrospective cohort or case control studies
- no randomised controlled clinical trials (moral and ethics)

Impact of appropriate antibiotics for sepsis

Impact of empiric appropriate antibiotics for sepsis

- Paul et al, 2010. AAC 54; 4851-63
- > 70 studies, 21,338 patients
- > 26 studies in ICU, 42 studies BSI, 15 studies pneumonia
- End point in all cause mortality
- Number to treat to avoid one fatal outcome: 10 (95% Cl 8-15)
- Impact of inappropriate therapy: Pooled OR 2.11 (95% CI 1.8 2.4) on mortality

Impact of empiric appropriate antibiotics for sepsis

- Settings, sources and pathogens

		Adjusted OR	
		OR	Studies (n)
Clinical setting	ICU	2.4 (1.5 – 3.8)	18
-	Non ICU	1.8 (1.5 – 2.1)	30
Bacteraemia	All	1.9 (1.5 – 2.4)	31
	Some	2.4(1.7 - 3.4)	17
Pathogen	MRSA	1.7 (0.5 – 6.0)	2
	P. aeruginosa	2.0 (1.1 – 3.6)	4
	Acinetobacter	7.6 (2.5 – 22.9)	2
Source	Pneumonia	2.2 (1.3 – 3.5)	10
	Other	2.0 (1.6 – 2.5)	38

Impact of empiric appropriate antibiotics for sepsis - Severity and co-morbidities

		Adjusted OR	
		OR	Studies (<i>n</i>)
Definition of appropriate	In vitro only	2.3 (1.7 – 3.1)	24
	Pharmacokinetic	1.7 (1.3 – 2.3)	15
Adjust for sepsis severity	Yes	2.2 (1.8 – 2.7)	43
	No	1.5 (1.0 – 2.1)	5
Adjust for co-morbidity	Yes	1.6 (1.4 – 1.8)	32
	No	3.3 (2.1 – 5.0)	16
Adjust for neutropaenia	Yes	1.6 (1.3 – 1.9)	19
-	No	2.4 (1.8 – 3.2)	29

Resistance in Gram-positive bacteria causing blood stream infection

	S.aureus			Enterococcus
Year	OXA R	Erythromycin	Ciprofloxacin	Vancomycin
	MecA ⁺ (%)	R(%)	R(%)	%R
2001	43.3	41.2	37.3	7.7
2003	40.3	39.6	44.5	10.2
2005	35.7	31.1	33.2	16.5
2007	36.3	33.5	31.9	13.4
2009	22.8	24.5	22.7	14.4
2010	19.4	21.4	20.7	15.6
2011	13.0	22.4	20.2	13.0
2012	11.3	16.2	15.6	8.5
2013	10.3	14.8	15.7	16.4

> Decline in MRSA

Increase in vancomycin resistant Enterococci

www.bsacsurv.org

Resistance in Gram-negative bacteria causing blood stream infection

	E.coli				
Year	CTX-R	CTX-M	Ciprofloxacin	Imipenem resistant	
	(%)	producer	resistant	%	
		%	%		
2001	-	0	8.2	0	
2003	2.0	1.6	10.5	0	
2005	7.7	6.1	16.6	0	
2007	11.3	7.7	24.2	0	
2009	6.8	5.4	13.6	0	
2010	6.4	5.8	16.0	0	
2011	9.0	-	20.9	0	
2012	11.0	-	22.9	0	
2013	11.5	-	20.2	0	

Rise and fall and rise of E.coli CTX-M producers

No detectable carbapenem resistance – first isolates in 2011

www.bsacsurv.org

Antibiotic resistance and bacteraemia

Specific pathogens: MRSA

Paul et al 2010 Retrospective cohort study of 510 episodes of MRSA BSI in Israel. Mortality was 49.1% (168/152) in inappropriate therapy 33.3% (56/168) for appropriate therapy

<u>Fang et al 2006</u> Retrospective cohort study of 162 BSI – Taiwan Analysis of appropriate therapy before 48h and >48h on 30 day mortality showed no impact of early empirical therapy

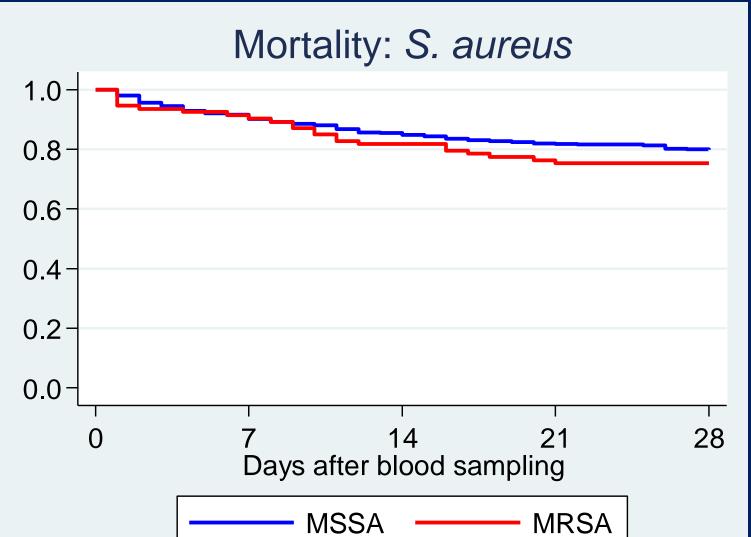
Antibiotic resistance and bacteraemia

Carbapenemase producing Enterobacteriaceae

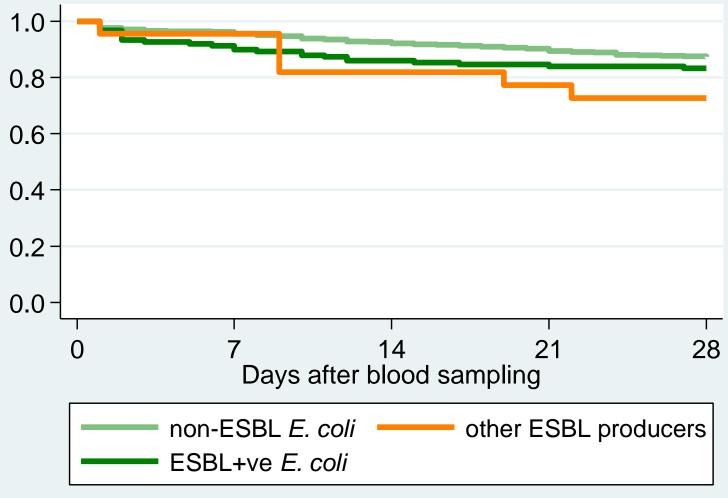
Ben-David et al 2012

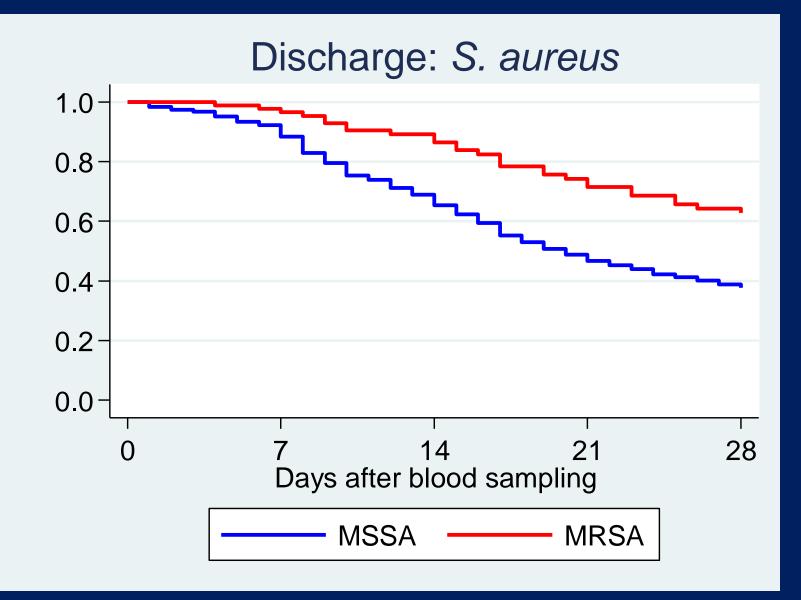
K.pneumoniae blood stream infection with CPE, ESBL and sensitive K.pneumoniae. Independent risk factors for death were PITT score, Charlson score and carbapenem resistance.

Diakos et al, 2009

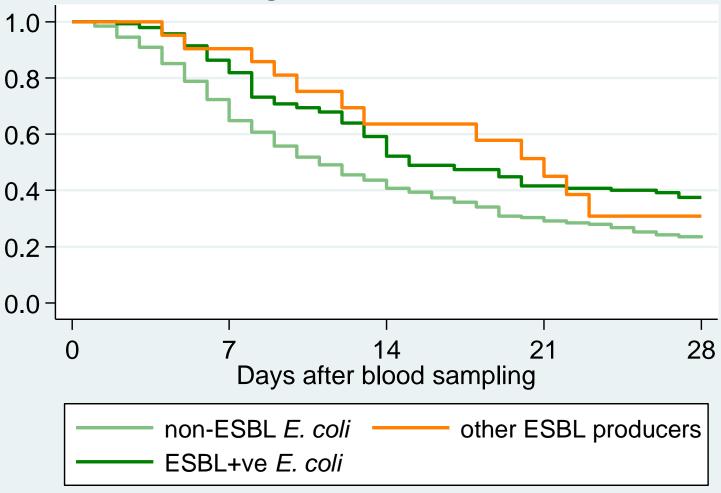

Prospective observational study of VIM 1 producing Kleb pneumoniae BSI. Carbapenem resistance – MIC >4mg/L, age, severity of underlying disease, were independent predictors of 14 day mortality, VIM production no impact.

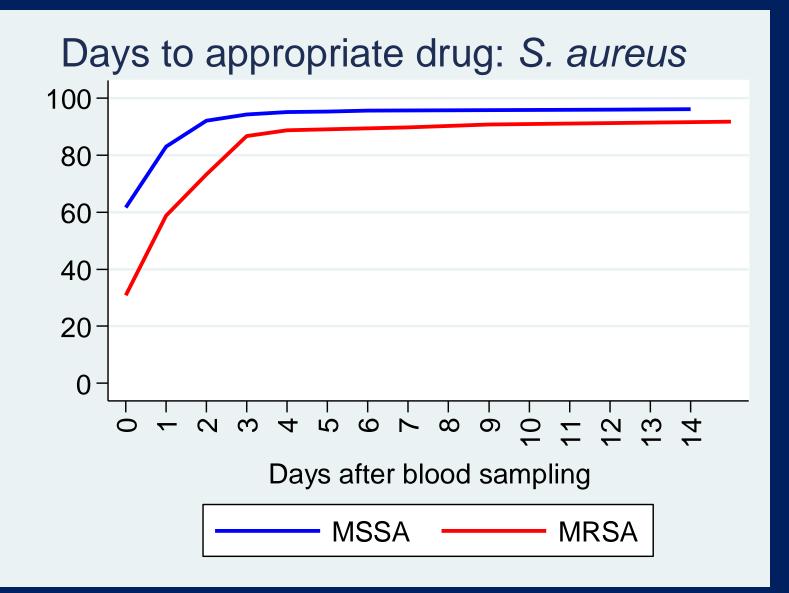
Antibiotic resistance in UTI


- RCT of ciprofloxacin vs co-trimoxazole in UTI co-t R associated with lower eradication and more failures (McCarthy et al, 1999)
- RCT of ciprofloxacin vs co-trimoxazole in acute pyelenephritis high rates of microbiology and clinical failure with Co-t R strains (Talan et al, 2000)
- impact of co-t R in uncomplicated UTI clinical and microbiological outcomes significantly worse if Co-t R *E.coli* (Raz et al, 2002)
- tmp R associated with longer time to symptom resolution, more reconsultations, higher bacteriological failures (McNulty, 2006)


Data from the NHS in England

- Observational study of 1700 patients with blood stream infection
 - > mortality MSSA vs MRSA
 - > mortality ESBL producers vs non-ESBL producers
 - > time to discharge MSSA vs MRSA
 - > time to discharge ESBL producers vs non-ESBL producers
 - > days to appropriate therapy S.aureus BSI




Mortality: Enterobacteriaceae

Discharge: Enterobacteriaceae

Conclusions

Antimicrobial resistance impacts on clinical outcomes

Antimicrobial resistance adds cost to healthcare

Multiple interventions are required (UK Five Year Resistance Strategy 2013-18)

Infection Control; antibiotic stewardship; education, training and public engagement; new treatments and diagnostics; better surveillance, prioritisation of research; international collaboration