

AMR transmission from the outdoor environment to humans in Bangladesh

An interdisciplinary approach

Dr Emily Rousham

Centre for Global Health and Human Development,
Loughborough University

Developing an interdisciplinary proposal

Learning from the interdisciplinary collaboration

Future opportunities

Biological anthropology: broad, holistic?

Socio-economic, environmental, biocultural influences Communicable & non-communicable disease

Evolution

Adaptation

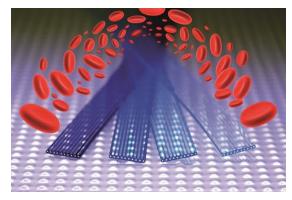
Behaviour

Epidemiology

Human population health

Public Health

Tackling Antimicrobial Resistance: An Interdisciplinary Approach


EPSRC Interdisciplinary network grant - Bridging the Gaps in AMR

Loughborough University

Principal investigator: Danish Malik, Chemical Engineering Co-investigators:

- John Ward, Mathematics
- Marc Kimber, Chemistry
- Sourav Ghosh, Bioengineering
- Emily Rousham, Human Sciences

Clinical and Industrial partners: Smith & Nephew, ABHI, University Hospitals of Leicester NHS Trust, The Royal Wolverhampton NHS Trust.

Images: Reis, Malik

AMR Packling Antimicrobial Resistance

AMR Cross Council Initiative a thematic approach to funding calls

Theme 1: Understanding resistant

Theme 2:
Accelerating
therapeutic
and diagnostic
development

Theme 4: Behaviour within and beyond the health care setting

Antibiotic resistance in the environment

Antibiotics enter the environment and act as selective agents via

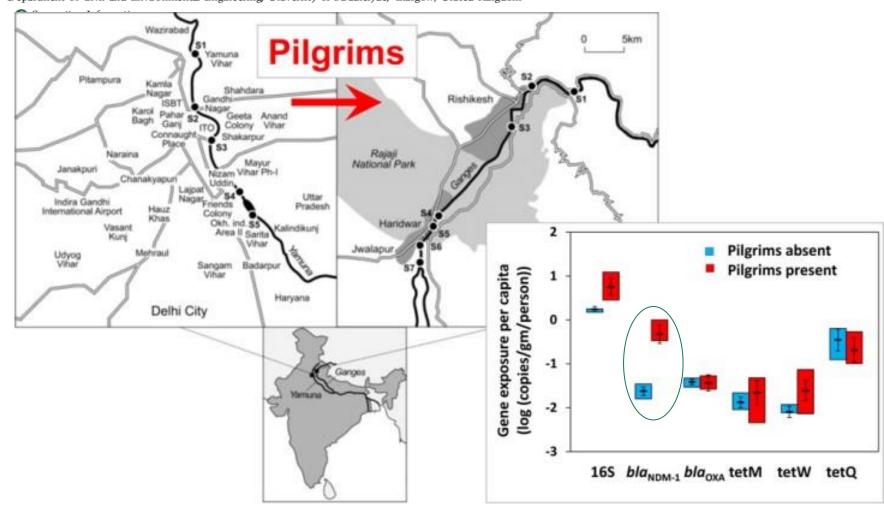
- wastewater
- pharmaceutical products
- agricultural run off
- solid waste

J Antimicrob Chemother 2014; 69: 1785-1791 doi:10.1093/jac/dku079 Advance Access publication 5 May 2014 Journal of Antimicrobial Chemotherapy

Waste water effluent contributes to the dissemination of CTX-M-15 in the natural environment

G. C. A. Amos¹, P. M. Hawkey^{2,3}, W. H. Gaze¹†‡ and E. M. Wellington¹*‡

¹School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; ²Health Protection Agency, West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Bordesley Green East, Birmingham, UK; ³Institute of Microbiology and Infection, Biosciences, University of Birmingham, Birmingham, UK



Increased Waterborne bla_{NDM-1} Resistance Gene Abundances Associated with Seasonal Human Pilgrimages to the Upper Ganges River

Z. S. Ahammad, †,‡ T. R. Sreekrishnan,‡ C. L. Hands,† C. W. Knapp,§ and D. W. Graham*,†

[§]Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom

[†]School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, United Kingdom

[‡]Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India

Spatial and temporal dynamics of AMR transmission from the outdoor environment to humans in Bangladesh

Physical geography

Paul Wood, Geography Loughborough

Public health engineering

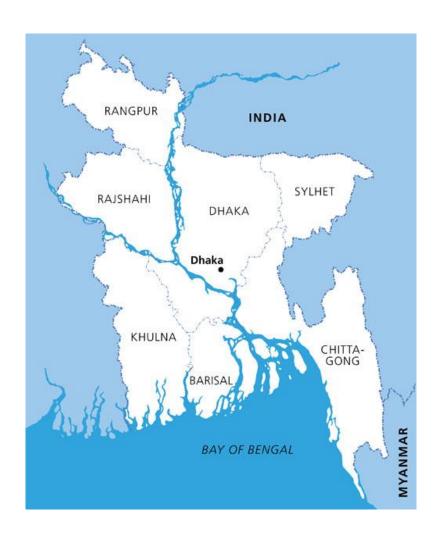
Mike Smith, Water Engineering & Development Centre, Loughborough

Microbiology

Aminul Islam, Food and Enteric Laboratory, icddrb, Bangladesh

Public Health

Leanne Unicomb, Environmental Intervention Unit, icddrb, Bangladesh


Biological anthropology

Emily Rousham, Centre for Global Health and Human Development, Loughborough

Social Anthropology

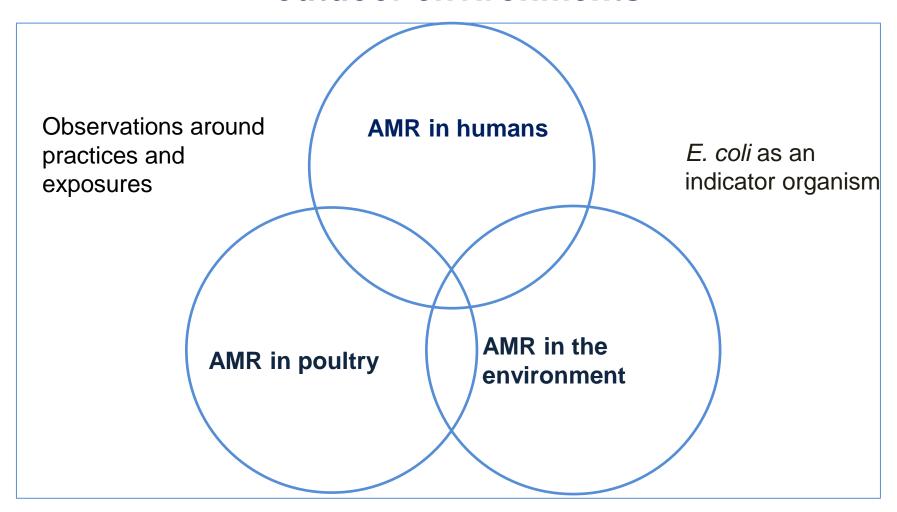
Bangladesh

- Population 156 million
- Population density 1,100 people per km²
- NDM-1 genes present in clinical samples since 2008
- Multi-drug resistant E. coli widespread in public water supply in Dhaka

Objectives

- Spatial and temporal variation in AMR bacteria and AMR genes
- Selective drivers in three outdoor environments
- Human exposure
- Ethnography custom and practice around poultry raising

Small scale commercial poultry farms



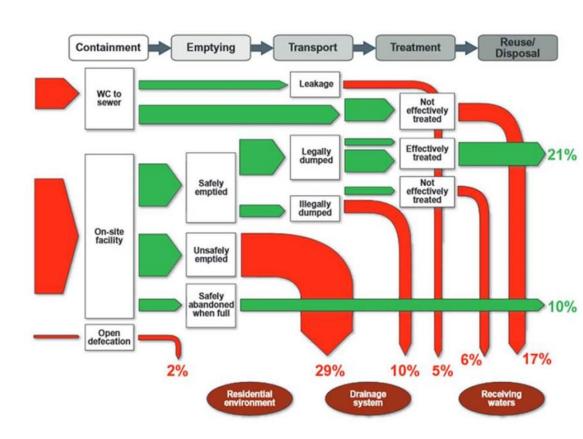
Backyard poultry keeping

Integrating pathways of AMR transmission in three outdoor environments

Work in progress

What have we learned?

Interdisciplinary Facilitators


Field based approaches

Breadth versus depth

Strong international partners

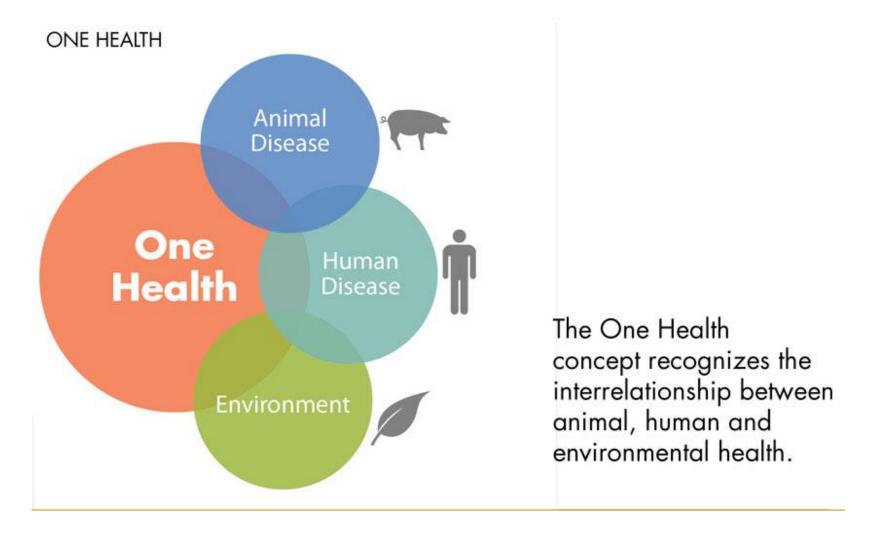
Moving beyond comfort zones

Excreta flow diagrams (SFDs) a tool to visualise how excreta physically flows through a city or town

Source: http://sfd.susana.org/

Theme 4: Pathways of antibiotic use in human and animals in Bangladesh

Over-the-counter antibiotics


- 100,000 licensed pharmacies
- A further 100,000 unlicensed pharmacies (SIAPS, 2015)

A One Health approach

Source: Department of Health, The Fleming Fund

Future needs: mitigating strategies

With grateful acknowledgement of funding support from:

- The Antimicrobial Resistance Cross Council Initiative supported by the seven research councils in partnership with the Department of Health and Department for Environment Food & Rural Affairs (NE/N019555/1 & ES/P004563/1)
- Engineering and Physical Science Research Council Grant no EP/MO27341/1

