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About the NICE Guidelines Technical Support Unit  

The NICE Guidelines Technical Support Unit (TSU) is a collaboration between the Universities of Bristol, 
Sheffield, York and Leicester. The TSU is commissioned by the Centre for Guidelines at the National 
Institute for Health and Clinical Excellence (NICE) to provide rapid-response technical support, 
methodology training, and methods research, in the context of guideline development. Please see this 
website for further information http://www.bristol.ac.uk/population-health-
sciences/centres/cresyda/mpes/nice/ 

About the Guideline Methodology Document series 

This series of Guideline Methodology Documents (GMDs) complements the Guide to the Methods of 
Technology Appraisal (1), the Guidelines Manual (2), and the NICE Decision Support Unit (DSU) 
Technical Support Documents (TSDs) (3-9).  

The aim of the GMDs is to assist all those involved in guideline development, including guideline 
developers, guideline committee members, those commenting on draft guidelines during the 
consultation period, manufacturers, and stakeholders. 

There is, of course, already a wealth of tutorial material on how to conduct systematic review and 
meta-analysis (10-12). The GMDs are in agreement with virtually all this material, although there are 
some significant differences in the way that meta-analytic methods are used.  

The GMDs take the particular perspective of the guideline developer. They therefore go beyond 
standard treatments in which systematic review and meta-analysis tend to be seen as methods for 
producing “pooled” analyses that “summarise the literature”. The decision context requires a focus 
on patients at specific points in their disease progression, methods that have particular properties 
regarding coherence and complete use of evidence, and procedures that are compatible with decision 
making under conditions of uncertainty. 

The GMDs are aimed at a basic and introductory level: more advanced topics are indicated with an 
asterisk (*), and readers are referred elsewhere.  

There are several areas of methodological uncertainty, controversy or rapid change. These are 
indicated in the GMDs. GMDs are extensively peer reviewed prior to publication (see 
acknowledgements).  However, the responsibility for each GMD lies with the authors, who welcome 
any constructive feedback on the content, suggestions for updates and further guides. Readers should 
be aware that while the TSU is funded by NICE, these documents do not constitute formal NICE 
guidance or policy. 
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1. INTRODUCTION: WHAT OUTCOMES ARE COVERED IN THIS GMD 

This GMD makes recommendations on the synthesis of event outcomes. This includes trials that 
report: 

 Proportions of patients who reach trial endpoints  
 Numbers who reach endpoints in relation to person-time at risk 
 Time-to-event outcomes with censoring  

The GMD covers the standard contrast-based meta-analytic methods, using the generic inverse 
variance method with normal approximations as the default, and Mantel-Haenszel methods where 
there are zero cell counts. Reasons for synthesising rates or probabilities are discussed. The meta-
analytic methods recommended here are in line with those in standard texts (10, 11), but is oriented 
to the decision making task of guideline developers. This requires consideration of how to deal with 
multiple outcomes and trials reported in multiple ways in the same meta-analysis. 

The recommendations are set out for reference in Section 2. Section 3 gives an overview of the data 
extraction and meta-analysis process, drawing attention to decisions that guideline developers need 
to make before data extraction can begin. 

Section 4 briefly looks at meta-analysis of trials with rare events and zero cells. Data extraction and 
processing procedures are set out in Section 5. Section 6 provides some worked examples of 
intermediate calculations that may be required, between data extraction and input into meta-analysis 
software. An accompanying Data Conversion Workbook (GMD-3 Data Conversion Workbook.xlsx) is 
available to assist in calculating the correct summary statistics for data input into Review Manager 
(RevMan) version 5.3, and the metafor package version 2.4-0 in R (version 3.6.3). The use of these 
packages is illustrated in a Software Appendix.   

 

2. SUMMARY OF RECOMMENDATIONS 

Recommendation 1. If event rates change over time, synthesis of log hazard ratios (LHRs) is 
recommended. 

Recommendation 2. If event rates do not change over time, synthesis of log odds ratios (LORs) is 
preferred to log relative risks (LRRs), unless there is evidence that LRRs are less heterogeneous. 

Recommendation 3. For trials with time-to-event data reporting hazard ratios, synthesis of log hazard 
ratios is recommended if the proportional hazards (PH) assumption is considered reasonable. 

Recommendation 4. If there are no zero cells, generic inverse variance methods should be used, with 
the Paule-Mandel estimator being the recommended between-study variance estimator when 
employing a frequentist method for random effects models. 

Recommendation 5. If there are zero cells, Mantel-Haenszel estimates should be used for fixed effect 
models; Bayesian methods are recommended for random effects models. Continuity corrections, 
where a constant is added to each cell of a 2 x 2 table, should be avoided if possible.  
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3. PRELIMINARY CONSIDERATIONS AND PLANNING 

The process starts with a scoping review of the literature (See GMD1). The trials selected for synthesis 
may report outcomes in several different ways. Before data extraction begins, guideline developers 
will need to decide what kind of model will be needed to synthesise the trial evidence, in particular 
whether event probabilities or event rates will be modelled. Relative treatment effects can be 
measured in several ways: odds ratios (ORs) and relative risks (RRs) are often used for probability 
outcomes, and hazard ratios (HRs) for rate outcomes. However, if event rates change over time, HRs 
or other measures of relative effect may be required.  

The scoping review should therefore answer the following questions: 

 Do trials report probabilities of events that occur over time, and should follow-up time be taken 
into account? 

 Do the trials report the number of patients who reach endpoints, or number of events in relation 
to time at risk; or are they time-to-event outcomes? 

 Is the outcome binary, or are there multiple outcome categories? If multiple, are they mutually 
exclusive, or related in some other way? 

The issues are discussed in more detail below.  

3.1. ODDS RATIOS, RELATIVE RISKS AND HAZARD RATIOS: THE ROLE OF FOLLOW-UP TIME 

Based, to some extent, on the nature of the available data, a key decision is whether the treatment is 
considered to alter the probability that the outcome occurs, or the (hazard) rate at which the outcome 
occurs. In the former case the synthesis will involve (log) odds ratios, or (log) relative risks. If treatment 
is considered to affect the hazard, then it will be the (log) hazard ratios that are synthesised. 

Underlying the question of rates versus probabilities is whether length of follow-up impacts on the 
probability of the outcome. Some outcomes either occur or do not occur (a baby is either low 
birthweight or not). In these cases, guideline developers will need to decide between ORs and RRs as 
the measure of treatment effect (see below). 

However, most events occur over the follow-up period, and more events are expected with longer 
follow-up. An event rate analysis is then the natural choice. 

Recommendation 1. If event rates change over time, synthesis of log hazard ratios (LHRs) is 
recommended. 

3.1.1.Identifying a minimum follow-up time 

Many outcomes tend to occur more rapidly immediately after the trial observation period begins, and 
then the rate diminishes over time. This may be due to a “depletion of susceptibles” phenomenon. 
Almost invariably, individuals differ in their risk of reaching the endpoint, so that high risk patients will 
reach the endpoint first, and the hazard rate will inevitably decrease until only the very low risk 
patients remain. Guideline developers may be able to identify a minimum follow-up time by which 
virtually all patients who are going to reach the endpoint will have done so. Further follow-up beyond 
this point will not contribute materially to the data. In this situation, a probability analysis, rather than 
a rate analysis, is possible as long as all the trials report outcomes at some point after that minimum. 
Alternatively, it may be decided to restrict the analysis to a range of follow-up times within which the 
ORs or RRs remain approximately constant. 
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3.1.2.* When is a hazard rate analysis necessary? 

If there is no restricted range of follow-up times where ORs and RRs remain roughly constant, nor a 
minimum time after which few further events occur, then an event rate analysis may be necessary, 
especially if formal cost-effectiveness analysis (CEA) or decision modelling is to take place. Modelling 
event rates is slightly more complicated as time has to be taken into account, but there may be no 
alternative as standard methods based on ORs and RRs can perform very poorly when events are not 
rare, as we describe below.  

If event rates in all treatment arms are less than 10% (over the relevant time period) (13), then the 
relative treatment effects measured as an HR, an OR, or an RR will all be very close (as are the LHR, 
log odds ratio (LOR), and log relative risk (LRR)).  

If event rates are not rare much more care needs to be taken. If events occur at a constant hazard rate 
in each arm, then the HR remains constant over time. (The HR can also remain constant when the arm 
rates change). But, in these circumstances, both the OR and the RR will depend on the follow-up time, 
and we should refer to  OR t  and  RR t , meaning the OR and RR at follow-up time t . For example, 

just after the trial onset, when follow-up time is barely greater than zero and events are “rare”, 
( ) ( )RR t OR t HR  , but as follow-up time is extended, the behaviour of  OR t  and  RR t  

diverges depending on how the HR is expressed. If 1HR  , then  RR t  decreases from HR  to 1 as 

t  increases, while  OR t  increases from HR  to infinity.  But if 1HR   then both  OR t  and  RR t  

decrease towards zero as t  increases. This is why OR and RR analyses must be abandoned when event 
rates change over time.  

3.2. ODDS RATIOS OR RELATIVE RISKS 

When a probability model, rather than a rate model, is required, there still remains a choice between 
OR and RR analyses. This is sometimes viewed as being a matter of which is easiest to interpret (11, 
14). However, this is incorrect: unless the endpoint is a relatively rare event (< 5%), the OR and RR 
analyses represent different models of the data, which lead to different predictions, and may even 
lead to different recommendations.  

Another consideration is that ORs are “symmetrical”, in the sense that the odds ratio for survival is 
the reciprocal of the odds ratio for mortality. A RR for survival has no such simple relation to the RR 
for mortality: these represent two very different models of the data. 

Ideally, the choice of OR or RR should be based on which one is the best model of the data. 
Investigations of large numbers of meta-analyses have failed to find marked overall differences 
between heterogeneity in ORs and RRs (14, 15), although there may be some disease areas where RRs 
better describe the impact of treatment, and others where ORs work better. Risk Differences are 
another possibility where treatment effects are additive, rather than multiplicative, however these 
are rarely used partly due to difficulties in constraining risks to lie between 0 and 1. As well as an 
analysis of the heterogeneity, a plot of the treatment effect against the control arm event probability 
can help highlight which measure is most stable in specific situations. However, because of the 
ambiguity in “which way round” the RR is taken, unless there are good reasons to the contrary, we 
recommend OR analysis as the default option. 

Recommendation 2. If event rates do not change over time, synthesis of log odds ratios (LORs) is 
preferred to log relative risks (LRRs), unless there is evidence that LRRs are less heterogeneous. 
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Definitions of ORs, RRs and how to derive them from 2x2 tables are given in Section 6, Example 1.  

3.2.1.Against “synthetic” relative risks 

In the interests of transparency, it is important that the measure of relative treatment effect that is 
reported (OR or RR) is the relative effect assumed in the meta-analysis. Some investigators carry out 
a meta-analysis of the LORs, then, once a baseline event probability has been identified, the event 
probabilities in the treatment and control arms are used to calculate an RR, which is then presented 
in the report. This is unnecessary and confusing. In addition, the credible intervals of the “synthetic” 
RR cannot be calculated correctly from the outputs of standard software.  

3.3. TIME TO EVENT OUTCOMES 

Analysis of event rates can take several forms: standard 2x2 tables of probability outcomes can be 
analysed with hazard rate models using complementary log-log (cloglog) models (Section 3.3.1); 
hazard rates are also used for number of events in relation to time-at-risk (Section 3.3.2); and time-
to-event analyses, sometimes called survival analysis (Section 3.3.3). 

3.3.1.Hazard rate analysis of probability outcomes 

If hazard rates change over time, 2x2 tables of event probability outcomes can be analysed in terms 
of hazard rates, using the cloglog transformation. This form of analysis assumes that the ratio of 
hazards remains the same – the proportional hazards (PH) assumption. Calculation of the LHR and its 
standard error for input into standard meta-analysis software is described in Section 6, Example 3. 

3.3.2.Hazard rate analysis of event frequencies in relation to time at risk 

This method is for trials that report the number of patients reaching the endpoint, and the total time-
at-risk. The method is described in Section 6, Example 4. It can also be used in situations where the 
same patient can experience the endpoint event more than once, for example, number of strokes, or 
numbers of teeth with caries. 

3.3.3.Time-to-event analysis with censored observations (“Survival analysis”) 

Time-at-risk is a way of taking account of “censoring”. This is the name given to the situation where 
some patients do not reach the endpoint, whether because they were lost to follow-up, or a different 
outcome intervened, or they reached the end of the trial observation period before any endpoint 
occurred. The most common way of reporting the relative treatment effect from a survival analysis is 
the HR or LHR, usually estimated by a Cox regression. LHRs can be synthesised using the generic 
inverse-variance meta-analytic method. Note, however, that this form of analysis assumes that the 
PH assumption holds for every trial. 

Recommendation 3. For trials with time-to-event data reporting hazard ratios, synthesis of log 
hazard ratios is recommended, if the proportional hazards (PH) assumption is considered 
reasonable. 

3.3.4.* Time-to-event outcomes without proportional hazards 

Proportional hazards is a strong assumption, especially in the context of cost-effectiveness analyses 
taking a life-time perspective. Survival curves crossing or converging indicate that hazards are not 
proportional. If the PH assumption is not accepted it may be necessary to scan in Kaplan Meier survival 
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curves in order to reconstruct original data. An R package (16) can be used for this, and similar 
software has been developed in STATA (17).  

Once the survival data is extracted, a number of options are available to model and synthesise the 
treatment effect (18), including fractional polynomials (18, 19), separate meta-analysis of shape and 
scale parameters (20), models based on area under the curve (21), and models to extrapolate baseline 
survival beyond the trial data (22-24).  

Changes in the relative treatment effect over time should be considered alongside the construction of 
a model for the baseline, as it is almost certain that the baseline risk or hazard will be changing over 
time as well (See GMD1). 

3.4. * MULTIPLE EVENT OUTCOMES – COMPETING RISKS, ORDERED CATEGORIES 

Multiple event outcomes occur in many different forms and synthesis of outcomes both within and 
between trials needs to be considered. In this GMD we consider only within-trial synthesis. Examples 
of between-trials synthesis are set out in GMD1.  

3.4.1.Conditioning one outcome on another 

A very common example of multiple outcomes arises with treatment discontinuation, which can be 
considered as a competing outcome alongside, for example, response to treatment, or relapse. In this 
case it is possible to take discontinuation vs no discontinuation as the first binary outcome, and then, 
among those who have not discontinued, relapse vs no relapse is a second binary outcome, 
conditional on the first. This means that two competing outcomes with a single denominator can be 
represented as two binary outcomes, leading to two separate and independent conventional meta-
analyses (see Example 5 in Section 6).  

As well as providing a solution to the problem of synthesising evidence on correlated outcomes, the 
conditioning approach is generally required in decision modelling, as the probability of discontinuation 
and the probability of response among those who continue must both be modelled. An intention-to-
treat (ITT) approach loses this distinction and is thus less helpful to decision makers, while per protocol 
(PP) analyses normally do not consider those who discontinue. As such, the conditioning approach 
provides a better alternative to both the ITT and PP approaches, as it describes what would happen in 
practise, which is more helpful for formulating economic models. 

Outcomes treated in this way will often be event outcomes which occur in time. Either, or both, 
outcomes may be analysed with ORs, RRs, or HRs. In the particular case of discontinuation, it may be 
possible to assume that discontinuation occurs relatively early, and can be considered as a probability 
outcome leading to an OR meta-analysis for discontinuation. The separate analysis of remission or 
relapse would most likely be a rate analysis. 

3.4.2. * Competing risks 

Where there are more than two competing categories, competing risks meta-analysis may be  better 
than a conditioning solution  (see schizophrenia example using WinBUGS (4)). This has been used in 
NICE guidelines on treatments for patients in remission from schizophrenia, where the outcomes were 
discontinuation for side effects, discontinuation for other reasons, and relapse (25, 26).  
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3.4.3. * Ordered categories 

Another type of multiple outcome occurs with ordered categories. Common examples are the PASI 
(Psoriasis Area Severity Index) scores: trials may then report the PASI50, PASI75 or PASI90, the 
proportion of patients whose improvement relative to baseline is above 50%, 75% and 90%. The 
America College of Rheumatology scores (ACR) are reported in the same way. Although it is possible 
to treat each category as a separate binary outcome, a more robust analysis is available if all these are 
analysed simultaneously, based on the assumption that the treatment effect is the same at each “cut-
point”. Worked examples can be found in TSD2 (4). Numerous examples of these methods can be 
found in NICE appraisals for psoriasis, psoriatic and rheumatoid arthritis, and ankylosing spondylitis 
(27-30). 

Note that, with both ordered categories and competing risks, separate analyses of each outcome 
without appropriate conditioning represents an incorrect model of the data, which ignores the 
negative correlations between the probabilities of being in each category. If results are to be 
embedded in CEAs or other decision models, these correlations must be propagated through the 
decision model, otherwise incorrect results will be obtained.  

 

4. SPARSE DATA AND ZERO CELLS 

The standard meta-analytic methods for frequency counts take relative effect measures (LORs, LRRs, 
LHRs) and their standard errors as the data, and rely on the assumptions that these have an 
approximately normal distribution. This assumption starts to break down when there are cell counts 
less than 3. When there are zero cells, estimates of treatment effect cannot be calculated.  

Recommendation 4. If there are no zero cells, generic inverse variance methods should be used, 
with the Paule-Mandel estimator being the recommended between-study variance estimator when 
employing a frequentist method for random effects models. 

There are several standard workarounds for zero cells counts: 

1. Add 0.5, or some other small number, to every cell in the table (called a “continuity 
correction”) and continue with the generic (inverse variance weighted) method, using fixed or 
random effects models 

2. Mantel-Haenszel methods (31) (fixed effect only) 
3. Peto method (32) (fixed effect only) 
4. Add 0.5 to every cell, and use Mantel-Haenszel methods (fixed effect only) 
5. *Use Bayesian methods (4), using fixed or random effects models 

Options 1 and 4 produces ORs, RRs, and HRs that are biased towards 1, i.e., towards a null effect. 
Option 3 also biases towards the null, particularly if the relative effect is large (33). Option 4 is the 
default option in RevMan, STATA and metafor in R, although the use of a continuity correction with 
Mantel-Haenszel methods is both unnecessary and incorrect (34). 

Unless trials with zero cell counts make up a relatively small proportion of trials, we therefore 
recommend option 2, or if a random effects model is indicated, option 5. Mantel-Haenszel methods 
are available for ORs, RRs and HRs based on events and time-at-risk. Worked examples are shown in 
the Software Appendix C. In the Cochrane review (35) which is used as an example, the bias in options 
1, 3, and 4 is substantial, underestimating the treatment effect by almost a factor of two. 



 

11 
 

Recommendation 5. If there are zero cells, Mantel-Haenszel estimates should be used for fixed 
effect models; Bayesian methods are recommended for random effects models. Continuity 
corrections, where a constant is added to each cell of a 2 x 2 table, should be avoided if possible. 

 

5. DATA EXTRACTION AND PROCESSING 

This section sets out preferred procedures for data extraction for the cases where standard meta-
analytic approaches are available, depending on whether a probability or rate model is required. 

Probability Model: Pick one of the following options, choosing the earliest one possible on the list 
1. 2 x 2 table, with the numerator being the number reaching the end point in each arm, and the 

denominators being the total number of patients. 
2. LOR, LRR, and their standard errors, or confidence intervals (Appendix A) 
3. OR, RR and their 95% confidence intervals (Appendix A) 
4. Estimated event probability at required follow-up time in each arm, and its standard error, based 

on a survival analysis1  
5. Extract required statistics from Kaplan Meier curve (Section 3.3.4)1 

 

  

 
1 If survival analysis has been performed, a rate model should be considered 
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Rate Model:  Pick one of the following options, choosing the earliest one on the list 
1. LHR and its standard error, or confidence interval (Appendix A) 
2. HR and its 95% confidence intervals (Appendix A) 
3. Number of events and total time at risk in each arm 
4. 2 x 2 table, with the numerator being the number reaching the end point in each arm, the total 

number of patients, and time-at-risk. If total time at risk is not reported, use the average follow-
up time multiplied by the total number of patients. 

 

 

6. INTERMEDIATE CALCULATIONS AND WORKED EXAMPLES 

In this section we give 5 worked examples: 

1. Converting 2 x 2 tables to LOR and SE(LOR) or LRR and SE(LRR) (no zero cells) 
2. Extraction of probabilities of an event from survival data, and its SE, and use in LOR and LRR 

analysis 
3. Converting 2 x 2 tables with follow-up time to LHR and SE(LHR) (no zero cells) 
4. Converting Poisson outcomes with person-years at risk to LHR and SE(LHR) 
5. Converting two competing outcomes into two binary outcomes, one conditional on the other  

The first four calculations can be carried out by the GMD3 Data Conversion Workbook (see Appendix 
B). 

 

Example 1: Converting 2 x 2 tables to LORs or LRRs and their SEs 

The results of each arm-based trial can be presented in the form of a 2 x 2 contingency table (Table 
6.1). 

Table 6.1. General 2 x 2 contingency table 
 Patients reaching 

end-point 
Patients not 

reaching end-point 
Total 

Treatment 1 a b 
1( )n a b    

Treatment 2 c d 
2 ( )n c d   

In Table 6.1, the number of individuals who experience an event in treatment groups 1 and 2 are 
represented by a and c, respectively. Similarly, the number of individuals who do not experience the 
event in treatment groups 1 and 2 are denoted by b and d, respectively. 
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Odds Ratio: 

The OR comparing treatment 2 to treatment 1 (Table 6.1) for each trial is: 

bc
OR

ad
  

where 
a

b
 and 

c

d
 are the odds of an event in an individual with treatments 1 and 2 respectively. 

The standard error of the LOR is:       1 1 1 1
SE LOR

a b c d
      

Relative Risk (Risk Ratio): 

The RR of treatment 2 compared to treatment 1 (Table 6.1) for each trial is: 

1

2

cn
RR

an
  

where 
1

a

n
 and 

2

c

n
 are the risks of an event with treatments 1 and 2 respectively. 

The standard error of the LRR is:      
1 2

1 1 1 1
SE LRR

a c n n
     

Worked example 

Table 6.2. Arm-based event data reported in Blum 1998 (36) 
 Dyspeptic Non-Dyspeptic 

Control 130 34 
Treatment 119 45 

 
Table 6.2 shows arm-based dichotomous data for a single trial (36) which was included in a systematic 
review on the effect of eradicating Helicobacter pylori on non-ulcer dyspepsia (14). The outcome of 
interest is the number of patients who remain dyspeptic (i.e. the lack of success of treating non-ulcer 
dyspepsia). 

The data are converted to the equivalent contrast-based measurement of LOR as follows: 

 119 34 1 1 1 1
0.692,  ln(0.692) 0.369,   0.260

45 130 119 45 130 34
OR LOR SE LOR


         


   

The LRR is calculated as follows: 

 119(130 34) 1 1 1 1
0.915,   ln(0.915) 0.0884,   0.062

130(119 45) 119 130 164 164
RR LRR SE LRR


         


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Example 2: Calculating ORs and RRs from probabilities derived from Kaplan Meier curves 

This example shows how data from a survival analysis can be used when it has been decided to carry 
out an analysis of ORs or RRs at a specified follow-up time. It assumes that the Kaplan Meier curves 
have been published, and that the methods in Section 3.3.4 have been used to reconstruct the KM 
data. Next, standard survival time software is used to calculate the event probabilities at the specified 
time t  for each arm,  ,1S t and  , 2S t , along with their standard errors,   ,1se S t  and 

  , 2se S t , respectively. 

The LOR at time t  comparing the log-odds of treatment 2 to treatment 1 is defined as:  

   
 

 
 

,2 ,1
ln ln

1 ,2 1 ,1
S t S t

LOR t
S t S t

           
  

The standard error of the LOR is:  

      
    

  
    

2 2
,1 ,2

,1 1 ,1 , 2 1 ,2

se S t se S t
SE LOR t

S t S t S t S t

   
           

  

 

The LRR at time t comparing the log-risks of treatment 2 to treatment 1 is defined as:  

       ln , 2 ln ,1LRR t S t S t    

The standard error of the LRR is: 

      
 

  
 

2 2
,1 ,2

,1 , 2

se S t se S t
SE LRR t

S t S t

   
       

   
  

 

Worked example 

Table 6.3. Event probabilities estimated from reconstructed Kaplan-Meier curve data of Albain 2009 (37) 

Study 

Chemoradiotherapy Chemotherapy + Surgery 
Probability of 
Survival at 5 

Years  
 5,1S   

Standard Error of 
Probability of 
Survival at 5 

years 
  5,1se S   

Probability of 
Survival at 5 

Years  
 5, 2S   

Standard Error 
of Probability of 

Survival at 5 
years 
  5, 2se S   

Albain 2009 0.188 0.041 0.258 0.037 
 
Table 6.3 shows the arm-based data for a single trial (37) which was included in a NICE guideline on 
non-small cell lung cancer (21). This trial presented Kaplan-Meier curves for overall survival, from 
which the synthetic individual patient data were extracted. Based on this synthetic data, the 
probability of surviving up to 5 years, along with its standard error, were estimated for each treatment 
using the survfit function in the survival package in R (38).  
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The data are converted to the equivalent contrast-based measurement of LOR as follows: 

 

   

     

2 2

0.258 0.188ln ln 0.4067,   1 0.258 1 0.188

0.041 0.037
0.3309

0.188 1 0.188 0.258 1 0.258

LOR

SE LOR

   

   
            

    

The LRR is calculated as follows: 

   

 
2 2

ln 0.258 ln 0.188 0.3165,   

0.041 0.037
0.2610

0.188 0.258

LRR

SE LRR

  

        
   

 . 

 

Example 3: Converting 2 x 2 tables with event data and time at risk to log hazard ratios 

Table 6.4. General data required from 2 x 2 contingency table 
 Patients reaching 

endpoint Total 

Treatment 1 r1 n1 

Treatment 2 r2 n2 

 
For a study reporting over a follow-up time f, the number of events observed in treatment groups 1 
and 2 (with sample sizes n1 and n2) are denoted by r1 and r2, respectively (Table 6.4).  

The HR comparing the hazards of treatment 2 to treatment 1 is defined as:  

2

1

ln(1 )
,

ln(1 )

p
HR

p





  

where p1 and p2 are the probabilities that an event occurs in treatment arms 1 and 2 respectively, 

expressed 1
1

1

r
p

n
  and 2

2
2

r
p

n
 .  

The standard error of the LHR is:  

   1 2
2 2

1 1 1 2 2 2(1 )[ln(1 )] (1 )[ln(1 )]

p p
SE LHR

n p p n p p
 

   
  

 

Worked example 

Table 6.5. Arm-based event data reported in AASK (39) 

Study 
Follow-up 

Time (years) 
β-Blockers CCB 

New Cases Total New Cases Total 
AASK 3.8   70 405 32 202 

 
Table 6.5 shows the data for a single trial from a network meta-analysis studying the incidence of 
diabetes in randomised controlled trials of antihypertensive drugs (39). The outcome of interest is 
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new cases of diabetes observed over the study follow-up period (measured in years) for two different 
treatments, β-Blockers and CCB. 

The LHR and the corresponding standard error comparing β-Blockers to CCB are calculated as follows 

for 1

32
0.158

202
p    and 2

70
0.173

405
p   :  

 
 

2

1

2 2

2

ln(1 ) ln(1 0.173) ln(0.827)
1.100,   ln(1.100) 0.0955

ln(1 ) ln(1 0.158) ln(0.842)

0.158 0.173

405(1 0.158)[ln(1 0.158)] 202(1 0.173)[ln(1 0.173)]

0.158 0.173

405(0.842)[ln(0.842)] 202(0.8

p
HR LHR

p

SE LHR

 
     

 

 
   

 
227)[ln(0.827)]

0.2137

  

Note that the follow-up time is not required in the computation of the LHR and its standard error. 

 

Example 4: Converting Poisson outcomes with person-years at risk to LHR and SE(LHR) 

Rate data for Poisson outcomes can be reported as the number of events observed per person-years.  

Table 6.6. General data format for trials reporting Poisson outcomes 
 

Events Person-years at 
risk 

Treatment 1 E1 T1 

Treatment 2 E2 T2 

 

The events in treatment arms 1 and 2 are denoted by E1 and E2 respectively; the respective person-
years observed are denoted by T1 and T2 (Table 6.6). 

The HR comparing treatment 2 to treatment 1, and the standard error of the LHR are: 

 2 1

1 2 1 2

1 1
,     

E T
HR SE LHR

E T E E
    

Worked example 

Table 6.7. Arm-based Poisson data reported in DART (40) 

Study 

Treatment Control 
Number of 

deaths 
Person-years at risk Number of deaths Person-years at risk 

DART 111 1925 113 1917 

Table 6.7 shows the rate data extracted from a trial that was included in a Cochrane Review (40) 
studying the effect of dietary fats on total mortality. Reduced fat diet interventions were compared 
to a control and the total mortality and the number of events observed per person years was reported.  
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The rate data are converted to the contrast-based LHR comparing treatment to the control as follows: 

 

111 1917
0.978,    ln(0.978) 0.022

113 1925

1 1
0.134

111 113

T C

C T

E T
HR LHR

E T

SE LHR


     



  

  

 

Example 5: Converting data on two competing outcomes into two binary outcomes 

An example of two competing outcomes might be: outcome 1 = treatment discontinuation, outcome 
2 = response. In the new format there would be two independent binary outcomes: treatment 
discontinuation, and response conditional on no treatment discontinuation. This requires the 
calculation of the denominator of the outcome 2, which is the denominator of outcome 1 minus the 
numerator of outcome 1 (Table 6.8).  

Worked example 

Table 6.8. Fictitious data illustrating competing outcomes 

Study 

Original data: two competing 
outcomes 

New format: two outcomes, one conditional 
on the other 

 O
ut

co
m

e 
1 

 O
ut

co
m

e 
2 

 D
en

om
in

at
or

 1
 

 O
ut

co
m

e 
1 

 D
en

om
in

at
or

 1
 

O
ut

co
m

e 
2 

(c
on

di
tio

na
l 

on
 

no
t o

ut
co

m
e 

1)
 

 D
en

om
in

at
or

 2
 

A B C A C B C-A 
Trial 1 10 12 100 10 100 12 90 
Trial 2 15 20 200 15 200 20 185 
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APPENDICES 

APPENDIX A 

Indirect estimation of the standard error of the log-ratios (e.g., odds ratios, relative risks, hazard 

ratios) 

Methods for deriving the standard error of a relative effect (e.g.,   = LOR, LRR, LHR), SE , from 
available statistics, when it is not reported directly.  
 

Finding SE  from 95% confidence interval 
on a LHR, LOR, LRR 

upper limit - lower limit

3.92
SE    

Finding SE  from LHR, LOR, or LRR,  , 
and z-statistic SE

z


   

Finding SE  from LHR, LOR, or LRR,  , 
and t-statistic SE

t


   

Finding SE  from 95% CI on a HR, OR or 
RR 

   ln upper limit - ln lower limit

3.92
SE    

Finding z-statistic from one sided p-value, 
p , corresponding to z-test 

 1 1z p   , where 1  is the inverse of 

the standard normal cumulative distribution 
function 

Finding z-statistic from two-sided p-value, 
p , corresponding to z-test  1 1 2

pz      

Finding t-statistic from one sided p-value, 
p , corresponding to t-test 

 1
1 2, , 2t t p df df n n      , where 1t   is 

the inverse of the t distribution, 1n  and 2n   are 
the number of patients in arm 1 and arm 2, 
respectively. 

Finding t-statistic from two-sided p-value, 
p , corresponding to t-test  1

1 2, , 22
pt t df df n n       

 
Alternatively, the RevMan calculator may assist in these calculations. An Excel File containing the 
RevMan calculator may be obtained from:  

http://training.cochrane.org/resource/revman-calculator 
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APPENDIX B 

General guidance on GMD3 Data Conversion Workbook 

This workbook should allow the user to input one of the prioritised sets of statistics listed in Section 5 
for each trial. To keep track of data conversions, we suggest saving a workbook for each guideline. 
Data may be stored for multiple trials within the worksheets for this purpose. The data should be 
outputted in a format required for synthesis, on the contrast-level. 

Table B.1. Reference to conversions in GMD3 Data Conversion Workbook  

Procedure Worksheet 
Data Input Data Output 

Statistics Column(s) Statistics Column(s) 
Calculate LOR or 
LRR based on 
2x2 data  

LOR and LRR  Number of patients 
reaching endpoint 

B; F log(OR) and SE 
 
logRR and SE 

X-Y 
 
Z-AA 
 
 

Number of patients 
randomised to 
treatment group 

C; G 

Calculate LOR or 
LRR based on 
event 
probabilities 
and SE 

LOR and LRR Event probability at 
required follow-up 
time 

D; H log(OR) and SE 
 
log(RR) and SE 

X-Y 
 
Z-AA 
 
 

Standard error of 
event probability 

E, I 

Calculate LHR 
based on event 
and person-time 
at risk data 

LHR Number of events B; F log(HR) and SE 
 
 

T-U 
 
 
 

Person-time at risk C; G 

Calculate LHR 
based on 2x2 
data  

LHR Number of patients 
reaching endpoint 

D; H log(HR) and SE 
 
 

T-U 
 
 
 

Number of patients 
randomised to 
treatment group 

E; I 

Calculate log-
odds based on 
partial 2 x 2 data 

log odds 
calculation 

Number of patients 
reaching endpoint 

B logodds 
 
V(log odds) 
 
SE(log odds) 

G 
 
H 
 
I 

Number of patients 
randomised to 
treatment group 

C 
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SOFTWARE APPENDIX 

A: ODDS RATIOS, RELATIVE RISKS, HAZARD RATIOS IN REVIEW MANAGER (REVMAN) 5.3 

Arm-based data are available for synthesis of OR and RR, but not HR data. HR meta-analysis must be 
performed using the contrast-based input of LHRs and their SEs. 

A fixed effect (FE) analysis is conducted in this example. For random effects (RE) models, the only 
method offered by RevMan is the Der-Simonian and Laird (41). 

Arm-based data 

1. Right click ‘Data and Analyses’ 

2. Select ‘Add Comparison’ 

 

3. The New Comparison Wizard pops up: 

 In ‘What name should the comparison have?’ Enter the treatments that are being compared 
in the meta-analysis and click ‘Next>’ 

 In ‘What do you want to do after the wizard is closed?’ select ‘Add an outcome under the new 
comparison’ and click ‘Continue’ 

4. The New Outcome Wizard pops up:  
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 Select ‘Dichotomous’ and click ‘Next>’ 
 For ‘Name’, enter the outcome being studied (In this example, ‘Number of patients still 

dyspeptic’) and treatment names (For this example, Group 1: Eradicating H.pylori and Group 
2: Control). Click ‘Next>’ 

 The next prompt for the New Outcome Wizard allows you to specify either an Odds ratio 
analysis, or a Relative Risk (Risk Ratio) analysis. Select and then click ‘Next>’ 

 

 Select the desired options from those given below for ‘Which analysis details do you want to 
use?’ and click on ‘Next>’.  
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 Under ‘Which graph details do you want to use?’, enter the graph labels and click ‘Next>’.  
(This depends on whether the outcome is desirable or not. For this example:  
                                Left Graph Label: Favours Treatment, 
                                Right Graph Label: Favours Control) 

 For the final prompt ‘What do you want to do after the wizard is closed?’, select ‘Add study 
data for the new outcome’ and click ‘Continue’. 

 Select the studies required under ‘Included Studies’ and click ‘Finish’ 

 

5. Copy the data from an Excel file and paste it in the appropriate column in RevMan 

 



 

23 
 

Contrast-based data 

RevMan carries out exactly the same “generic inverse variance” analysis on LORs, LRRs, and LHRs as it 
does on contrast-based continuous data. The only difference between these analyses is specifying the 
chosen effect measure in the relevant window (See Step 4 for more details). RevMan uses this 
information to correctly label the outputs: the underlying analysis is identical in every case. 

1. Right click ‘Data and Analyses’ 

2. Select ‘Add Comparison’ 

 

3. The New Comparison Wizard pops up: 

 In ‘What name should the comparison have?’ Enter the treatments that are being compared 
in the meta-analysis and click ‘Next>’ 

 In ‘What do you want to do after the wizard is closed?’ select ‘Add an outcome under the new 
comparison’ and click ‘Continue’ 

4. The New Outcome Wizard pops up:  
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 Select the appropriate Data Type (‘Generic Inverse Variance’ in this example where we input 
the log-OR and SE for each included trial) and click ‘Next>’ 

 For the second prompt, ‘Name’, enter the outcome being studied (In this example, ‘Number 
of patients still dyspeptic’) and treatment names (For this example, Group 1: Eradicating 
H.pylori and Group 2: Control). Click ‘Next>’ 

 For the third prompt, “Which analysis method do you want to use”, specify the analysis 
methods. This is also where the effect measure can be selected. Select “Odds Ratio” for a 
LogOR analysis, or “Risk Ratio” for a LogRR analysis. For a LogHR analysis, select the “Name of 
Effect Measure” and select “Hazard Ratio” from the drop-down box. Click ‘Next>’. 

 

 Select the desired options from those given below for ‘Which analysis details do you want to 
use?’ and click on ‘Next>’.  
 

 
 Under ‘Which graph details do you want to use?’, enter the graph labels and click ‘Next>’.  

(This depends on whether the outcome is desirable or not. For this example:  
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Left Graph Label: Favours Treatment, 
Right Graph Label: Favours Control) 

 For the final prompt ‘What do you want to do after the wizard is closed?’, select ‘Add study 
data for the new outcome’ and click ‘Continue’. 

 Select the studies required under ‘Included Studies’ and click ‘Finish’ 
 

 

 

5. Copy the data from an Excel file and paste it in the appropriate column in RevMan 
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B: ODDS RATIOS, RELATIVE RISKS, HAZARD RATIOS IN METAFOR VERSION 2.4-0 (R) 

The metafor package in R can be used for meta-analysis of OR, RR, or HR, in either arm-based on 
contrast-based forms (42). Data can be loaded into R as an Excel file.  

metafor offers a variety of meta-analysis methods (including DerSimonian and Laird (41)) to estimate 
the heterogeneity in a RE model (42). By default, metafor (version 2.4-0) uses the REML method for 
RE models (43); we suggest the Paule-Mandel estimator for the between-study variance, as 
recommended by the authors in (44).  

Arm-based data 

When analysing arm-based data, the Excel file consists of the study ID (Sid), the number of individuals 
that experienced the event (in this example, the number of people who are still dyspeptic) in the 
treatment arm (denoted by a) and the control arm (denoted by c). The total number of individuals in 
the treatment and control arms are denoted by n1 and n2 respectively (Figure 1) 

 

Figure 1. Excel spreadsheet containing arm-level data for studies comparing the removal of H. pylori to control 
in reducing dyspepsia 

 

 
Figure 2. Meta-analysis of arm-level data comparing the effectiveness of H.pylori eradication in non-ulcer 
dyspepsia 
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The code that was used to conduct the analysis and create the resulting forest plot (Figure 2) is given 
in (Figure 3). The code is annotated to highlight other options that are available for the method of 
analysis, the models used and the effect measures. Output from R is displayed in blue. 

# Set working directory 
setwd(O:/) 
 
# Load packages 
library(metafor) 
library(xlsx) 
 
############################### 
#####     Arm-based data   ####   
############################### 
 
# Load data from the “arm-based” worksheet in an Excel file entitled “H.pylori Example.xlsx” 
data.arm <- read.xlsx(file="H.pylori Example.xlsx", sheetName="arm-based", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(data.arm) 
 
# Fit a Fixed Effect model 
model.arm <- rma(ai=a,ci=c,                                                         # Specify the number of individuls in the each arm that experienced the event 
                 n1i=n1, n2i=n2,                                                           # Specify the total number of individuals in both treatment arms 
                 measure="OR",                                                          # Specify effect measures  
                 data=data.arm,                                                           # Specify data 
                 slab= Sid,                                                                   # Specify columns that contain details of studies 
                 method="FE"                                                             # Specify the model 
                 ) 
 
# Display the MA results 
model.arm 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 5 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (LOR estimate = -0.26, CI = (-0.51, -0.00)). 
 # Fixed-Effects Model (k = 5) 
 # 
 #  I^2 (total heterogeneity / total variability):   63.03% 
 # H^2 (total variability / sampling variability):  2.71 
 # 
 # Test for Heterogeneity:  
 #   Q(df = 4) = 10.8201, p-val = 0.0287 
 #  
 # Model Results: 
 #    
 #   estimate      se     zval    pval    ci.lb    ci.ub    
 # -0.2553  0.1287  -1.9838  0.0473  -0.5076  -0.0031  * 
 #    
 #   --- 
 #   Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
 
# Create a forest plot 
forest(x=model.arm,                                                                                                          # Specify the MA model used to construct the forest plot 
       xlim=c(-7,4),                                                                                                                # Specify horizontal limits of the plot 
       at=log(c(0.1, 0.4, 1, 3)),                                                                                               # Position ticks on the x-axis 
       showweights=TRUE,                                                                                                    # Make the study weights visible 
       ilab=cbind(data.arm$a, data.arm$n1, data.arm$c, data.arm$n2),                               # Specify column names of the study data 
       ilab.xpos = c(-4.75,-4.0,-3, -2.25),                                                                               # Specify location for the columns added in ilab 
       atransf = exp,                                                                                                            # Exponential transformation of LOR to OR 
       refline=0,                                                                                                                   # Draw a line for the null value at 1 
       xlab= "Odds Ratio")                                                                                                   # Label the x-axis 
 
# Add labels/titles for the forest plot 
text(c(-4.75, -4.0, -3, -2.25),                                                                                       # Horizontal position of the labels 
     y=5.75,                                                                                                                 # Vertical position of the labels 
     c("Events", "Total", "Events", "Total"),                                                                 # Labels 
     font=4)                                                                                                                 # Font is bolded and italicised 
 
text(c(-6.5, -4.5, -2.7, 1.8, 3), 
     y=6.25, 
     c("Study", "Treatment", "Control", "Weight", "OR [95% CI]"), 
     font=2) 

Figure 3. Code for the meta-analysis of arm-based data 
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The function rma() (42), which fits fixed- and random effects meta-analysis models, has the following 
generic form: 

rma(ai, bi, ci, di, n1i, n2i, x1i, x2i, t1i, t2i, measure, method, data, slab) 

Relevant arguments are assigned values depending on the type of analysis that is desired. Table S.1 
details arguments used for each analysis. 

Table S.1. Argument statements for specific meta-analyses 
Statistic Effect Measure Data Model Type 

Odds Ratio 
(OR) measure= “OR” 

2 x 2 Table: 
ai= upper left cell 
ci= lower left cell 
bi=upper right cell 
di=lower right cell 
 
Alternatively, 
ai= upper left cell 
ci= lower left cell 
n1i= group size treatment 1 
n2i= group size treatment 2 

 
Fixed Effect: 

method= “FE” 
 
 
 

Random Effects: 
 

Paule-Mandel 
estimator: 

method= “PM” 
 
 

Der-Simonian and 
Laird: 

method= “DL” 

Risk Ratio/ 
Relative Risk 

(RR) 
measure= “RR” 

Hazard Ratio 
(HR) 

 
(using the 
Incidence 

Rate Ratio, 
IRR) 

measure = “IRR” 

x1i= No. of events in group 1 
x2i= No. of events in group 2 
 
t1i= total person-time in group 1 
t2i= total person-time in group 2 
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Contrast-based data 

For the analysis of contrast-based data, the Excel file comprises of the study ID (Sid), the log-odds ratio 
(log_OR) and the corresponding standard deviation (se_OR) for each included study (Figure 4). 

 

 
Figure 4. Excel spreadsheet containing contrast-level data for studies comparing the removal of H. pylori to 
control in reducing dyspepsia 

The code that was used to create the forest plot for the analysis (Figure 5) is given in Figure 6. The only 
way the rma() function for contrast-based data differs from the function used for arm-based data is 
the way the data are input. The argument ‘yi=’ is used to assign the LOR/LRR/LHR values and 
corresponding SE is assigned using the argument ‘sei=’. Output from R is displayed in blue. 

 
Figure 5. Meta-analysis of contrast-level data comparing the effectiveness of H.pylori eradication in non-ulcer 
dyspepsia 
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# Set working directory 
setwd(O:/) 
 
# Load packages 
library(metafor) 
library(xlsx) 
 
################################## 
#####  Contrast -based data   ####   
################################## 
 
# Load data from the “contrast-based” worksheet in an Excel file entitled “H.pylori Example.xlsx” 
data.con <- read.xlsx(file="H.pylori Example.xlsx", sheetName="contrast-based", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(data.con) 
 
# Fit a Fixed Effect model 
model.con <- rma(yi=log_OR, sei=se_OR,                                                   # Specify the log-ratio measure and the corresponding SE 
                 measure="OR",                                                                            # Specify effect measures 
                 data=data.con,                                                                             # Specify data 
                 slab= Sid,                                                                                     # Specify columns that contain details of studies 
                 method="FE")                                                                               # Specify the model to be fit 
 
# Display the MA results 
model.con 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 5 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (LOR estimate = -0.26, CI = (-0.51, -0.00)). 
 # Fixed-Effects Model (k = 5) 
 #  
 # I^2 (total heterogeneity / total variability):   63.03% 
 # H^2 (total variability / sampling variability):  2.71 
 # 
 # Test for Heterogeneity:  
 #   Q(df = 4) = 10.8201, p-val = 0.0287 
 # 
 # Model Results: 
 #   
 #   estimate      se     zval    pval    ci.lb    ci.ub    
 # -0.2553  0.1287  -1.9838  0.0473  -0.5076  -0.0031  * 
 #   
 #   --- 
 #   Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
 
# Create a forest plot 
forest(x=model.con,                                                                                 # Specify the MA model used to construct the forest plot 
       xlim=c(-7,7),                                                                                      # Specify horizontal limits of the plot 
       at=log(c(0.1, 0.4, 1, 3)),                                                                    # Position ticks on the x-axis 
       showweights=TRUE,                                                                       # Make the study weights visible 
       atransf = exp,                                                                                  # Exponential transformation of estimates and axes 
       refline=0,                                                                                        # Draw a line for the null value at 0 
       xlab="Odds Ratio")                                                                     # Label the x-axis with the effect measure  
 
# Add labels/titles for the forest plot 
text(c(-6.5, 4.1, 6.1), 
     y=6.25, 
     c("Study", "Weight", "OR [95% CI]"), 
     font=2) 

Figure 6. Code for the meta-analysis of contrast-based data 
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C: MANTEL-HAENSZEL METHODS FOR DATA WITH ZERO CELLS  

C.1. Probability models 

The Mantel-Haenszel method is recommended when aggregating studies with sparse data, e.g. when 
there are zero cell counts. RevMan adds a continuity correction of 0.5 to all the cells in a 2 x 2 table 
where there is at least one zero cell: a procedure that is not only unnecessary but also incorrect (34). 
Other software such as the metafor package in R can compute a Mantel-Haenszel OR or RR without a 
continuity correction.  

R: metafor 

The rma.mh() command in the metafor package (version 2.4-0) in R fits fixed effect models to 2 x 2 
tables using the Mantel-Haenszel method (42). The function rma.mh() uses exactly the same 
arguments as the rma() function for effect measures and data entry (though the option ‘method=’ will 
not work), which are described in detail in Table S.1 in the Appendix B on arm-based data with non-
zero cells. By default, a continuity correction is applied to trials with zero cells in order to include them 
in forest plots, but the Mantel-Haenszel estimates do not include a continuity correction. 

An example of sparse dichotomous data is shown in Figure 7. For each study, the number of newborns 
colonised by group B strep in the intrapartum antibiotic prophylaxis (IAP) and control arms are 
denoted a and c, respectively. The total number of mothers who gave birth in the IAP and control arms 
are denoted by n1 and n2, respectively (35).  

 

Figure 7. Excel spreadsheet illustrating sparse dichotomous data 

The code for the forest plot for this analysis (Figure 8) is given in Figure 9. Output from R is displayed 
in blue. 

 
Figure 8. Meta-analysis of the effectiveness of IAP at preventing EOGBS in newborns born to colonised mothers 
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# Set working directory 
setwd(O:/) 
 
# Load packages 
library(metafor) 
library(xlsx) 
 
# Load data from the “Ohlsson” worksheet in an Excel file entitled “MHEx.xlsx” 
data <- read.xlsx(file="MHEx.xlsx", sheetName="Ohlsson", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(data) 
 
####################################################### 
###############              Odds Ratio               ################ 
####################################################### 
 
model.mh1 <- rma.mh(ai=a, ci=c,  n1i=n1, n2i=n2,                                        # Specify data from the 2 x 2 table 
             measure="OR",                                                                                 # Specify Effect Measures 
             correct="FALSE",                                                                             # Do not apply a continuity correction to zero cells when computing CMH test 
             data=data,                                                                                        # Specify data  
             slab= Sid)                                                                                        # Insert labels/ study names 
 
# Display the MA results 
model.mh1 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 3 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (LOR estimate = -2.37, CI = (-4.38, -0.36), OR         
  # estimate = 0.09, CI = (0.01, 0.70)). 
 # Fixed-Effects Model (k = 3) 
 # 
 # I^2 (total heterogeneity / total variability):  0.00% 
 # H^2 (total variability / sampling variability): 0.42 
 # 
 # Test for Heterogeneity:  
 #  Q(df = 2) = 0.8432, p-val = 0.6560 
 # 
 # Model Results (log scale): 
 #   
 #   estimate      se     zval    pval    ci.lb    ci.ub 
 # -2.3702  1.0280  -2.3057  0.0211  -4.3849  -0.3554 
 # 
 # Model Results (OR scale): 
 #    
 #  estimate   ci.lb   ci.ub 
 # 0.0935  0.0125  0.7009 
 # 
 # Cochran-Mantel-Haenszel Test:    CMH = 8.4479, df = 1, p-val = 0.0037 
 # Tarone's Test for Heterogeneity: X^2 = 1.5014, df = 2, p-val = 0.4720 
 
forest(model.mh1, 
       xlim=c(-15,7),                                                                                                 # Specify horizontal limits of the plot 
       #alim=c(0, 1.1),                                                                                              # Specify limits of the actual x-axis 
       at=log(c(0.01, 0.1, 1, 2, 4)),                                                                           # Position the x-axis tick marks 
       ilab=cbind(data$a, data$n1, data$c, data$n2),                                             # Specify column names of the study data to be included in plot 
       ilab.xpos = c(-10.5, -9, -7, -5.5),                                                                    # Specify location for the columns added in ilab 
       refline=0,                                                                                                       # Positioning the vertical reference line (on log scale) 
       showweights = TRUE,                                                                                  # Include the inverse variance weights 
       atransf = exp,                                                                                               # Transform log-measures for ORs and axes 
       cex=0.9,                                                                                                      # Expansion factor for the Forest Plot 
       xlab= "Odds Ratio")                                                                                    # Label the x-axis with the effect measure 
 
# Labels and Headings 
text(c(-14, -9.5, -6.5,  3, 5.5),                                                                          # Positioning labels horizontally 
     y=4.25,                                                                                                      #  Positioning labels vertically 
     c("Study", "Treatment", "Control", "Weight", "OR [95% CI]"),                   # Headings 
     font=2,                                                                                                      # Font is bolded  
     cex=0.9)                                                                                                   # Expansion factor for the headings 
 
text(c(-10.5, -9, -7, -5.5),                                                                          # Positioning labels horizontally 
     y=3.75,                                                                                               # Positioning labels vertically 
     c("Events", "Total", "Events", "Total"),                                               # Labels 
     font=4,                                                                                               # Font is bolded and italicised 
     cex=0.8)                                                                                            # Expansion factor for the headings 

Figure 9. Code for meta-analysis of log odds ratios conducted using the Mantel-Haenszel method 
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The Mantel-Haenszel estimated OR and RR for the example above are reported in Table S.2 below. 
The table compares these estimates to the Mantel-Haenszel estimated OR and RR with a continuity 
correction of 0.5, the OR estimated using the Peto method and the OR and RR calculated using the 
inverse variance method with a continuity correction of 0.5. 

Table S.2.  Estimates for ORs and RRs, and corresponding 95% CIs for sparse data using different meta-
analysis methods. 

 Odds Ratio (OR) Relative Risk/ 
Risk Ratio (RR) 

Mantel Haenszel Method without Continuity 
Correction 

0.094 (0.013, 0.701) 0.097 (0.014, 0.694) 

Mantel Haenszel Method with Continuity 
Correction 

0.163 (0.0367, 0.726) 0.170 (0.039, 0.735) 

Peto Method 
 

0.195 (0.065, 0.587)  

Inverse Variance Method with Continuity 
Correction 

0.169 (0.037, 0.761) 0.177 (0.040, 0.778) 

 

C.2. Rate models 

RevMan currently does not have an option for pooling Poisson data through the Mantel-Haenszel 
approach, however this can be done using metafor in R. 

R: metafor 

An example of sparse event data is shown in Figure 10. For each study, the number of malignancies in 
the Etanercept (50 mg twice weekly) and placebo arms are denoted by E1 and E2, respectively. The 
total person-years at risk in the Etanercept (50 mg twice weekly) and placebo arms are denoted by T1 
and T2, respectively (45).  

 

 
Figure 10. Excel spreadsheet illustrating sparse event data 

The code for the forest plot for this analysis (Figure 11) is given in Figure 12. Output from R is displayed 
in blue. 
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Figure 11. Meta-analysis of the safety of Etanercept (50 mg twice weekly) in terms of incidence of malignancies 
in adults with psoriatic disease 
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# Set working directory 
setwd(O:/) 
 
# Load packages 
library(metafor) 
library(xlsx) 
 
# Load data from the “Ohlsson” worksheet in an Excel file entitled “MHEx.xlsx” 
data <- read.xlsx(file="MHEx.xlsx", sheetName="Dommasch", header=TRUE) 
 
# Preview a maximum of the first 6 rows of the data 
head(data) 
 
####################################################### 
##############           Incidence Rate Ratio          ############## 
####################################################### 
 
model.mh1 <- rma.mh(x1i=E1, x2i=E2,  t1i=T1, t2i=T2,                                   # Specify event and time at risk data  
             measure="IRR",                                                                                   # Specify Effect Measures 
             correct="FALSE",                                                                               # Do not apply a continuity correction to zero cells 
             data=data,                                                                                          # Specify data  
             slab= Sid)                                                                                          # Insert labels/ study names 
 
# Display the MA results 
model.mh1 
 
  # R displays a summary of the meta-analysis model. It first notes that a fixed effect model was fitted, where k = 3 studies were included. 
  # The results of a Q-test for heterogeneity are displayed, followed by the pooled summary results (logIRR estimate = 1.06, CI = (-0.24, 2.37), IRR         
  # estimate = 2.90, CI = (0.78, 10.73)). 
 # Fixed-Effects Model (k = 3) 
 # 
 # I^2 (total heterogeneity / total variability):  0.00% 
 # H^2 (total variability / sampling variability): 0.86 
 # 
 # Test for Heterogeneity:  
 # Q(df = 2) = 1.7269, p-val = 0.4217 
 # 
 # Model Results (log scale): 
 # 
 #  estimate   se            zval       pval        ci.lb         ci.ub  
 #  1.0644     0.6676    1.5943   0.1109    -0.2441   2.3729  
 # 
 # Model Results (IRR scale): 
 # 
 #  estimate   ci.lb        ci.ub  
 #  2.8991     0.7834    10.7281  
 # 
 # Mantel-Haenszel Test: MH = 2.7911, df = 1, p-val = 0.0948  
 
forest(model.mh1, 
       xlim=c(-15,8),                                                                                                 # Specify horizontal limits of the plot 
       #alim=c(0, 1.1),                                                                                              # Specify limits of the actual x-axis 
       at=log(c(0.1, 0.5, 1, 2, 4, 9, 16)),                                                                    # Position the x-axis tick marks 
       ilab=cbind(data$E1, data$T1, data$E2, data$T2),                                        # Specify column names of the study data to be included in plot 
       ilab.xpos = c(-10.5, -8.5, -6.5, -4.5),                                                              # Specify location for the columns added in ilab 
       refline=0,                                                                                                       # Positioning the vertical reference line (on log scale) 
       showweights = FALSE,                                                                                # Do not include the inverse variance weights 
       atransf = exp,                                                                                               # Transform log-measures for ORs and axes 
       cex=0.9,                                                                                                      # Expansion factor for the Forest Plot 
       xlab= "Incidence Rate Ratio")                                                                     # Label the x-axis with the effect measure 
 
# Labels and Headings 
text(c(-14, -9.5, -5.5,  6.75),                                                                          # Positioning labels horizontally 
     y=4.5,                                                                                                      #  Positioning labels vertically 
     c("Study", "Treatment", "Control", "IRR [95% CI]"),                                  # Headings 
     font=2,                                                                                                      # Font is bolded  
     cex=0.9)                                                                                                   # Expansion factor for the headings 
 
text(c(-10.5, -9.5, -6.5, -4.5),                                                                    # Positioning labels horizontally 
     y=3.75,                                                                                               # Positioning labels vertically 
     c("Events", "Person-Years", "Events", "Person-Years"),                   # Labels 
     font=4,                                                                                               # Font is bolded and italicised 
     cex=0.8)                                                                                            # Expansion factor for the headings 

Figure 12. Code for meta-analysis of log incidence rate ratios conducted using the Mantel-Haenszel method 
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