Complex numbers

- C1 Write the complex number $z_1 = \sqrt{2}e^{i\pi/4}$ in the form a + ib for real a and b.
- C2 Write the complex number $z_2 = 1 + \sqrt{3}i$ in polar form $re^{i\theta}$.
- C3 Let \overline{z} denote the complex conjugate of the complex number z. Write $\overline{z_2}$ in polar form.
- C4 For any complex numbers w and z, show that $z\overline{z} = |z|^2$, $\overline{zw} = \overline{z} \ \overline{w}$ and $|z + w|^2 = |z|^2 + |w|^2 + \overline{z}w + z\overline{w}$.
- C5 Show that $|1 + e^{i\theta}|^2 = 4\cos^2(\theta/2)$.
- C6 Let $\omega = e^{2i\pi/3}$. Compute $\overline{\omega}$ and $|\omega|$. Show that $\overline{\omega} = \omega^2$, $\overline{\omega^2} = \omega$ and $\omega^3 = 1$. Show that $1 + \omega + \omega^2 = 0$.

Matrices

Let us define the matrices

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

- M1 Show that $\sigma_x \sigma_y = -\sigma_y \sigma_x$, $\sigma_x^2 = \sigma_y^2 = I_2$, $\sigma_x^{\dagger} = \sigma_x$ and $\sigma_y^{\dagger} = \sigma_y$. [*M*[†] denotes the Hermitian conjugate of the matrix *M* i.e. the matrix derived from *M* by taking its transpose and the complex conjugate of each coefficient.]
- M2 Show that the eigenvalues of σ_x are ± 1 , and find normalised eigenvectors \mathbf{e}_1 and \mathbf{e}_2 . Show that these eigenvectors are orthogonal [i.e. $\overline{\mathbf{e}_1}^T \cdot \mathbf{e}_2 = 0$]
- M3 Show that the eigenvalues of σ_y are ± 1 , and find normalised eigenvectors \mathbf{f}_1 and \mathbf{f}_2 . Show that these eigenvectors are orthogonal [i.e. $\overline{\mathbf{f}_1}^T \cdot \mathbf{f}_2 = 0$].
- M4 Show how to write an arbitrary (complex) 2-component vector $\mathbf{v} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ in terms of the basis \mathbf{f}_1 and \mathbf{f}_2 . i.e. write $\mathbf{v} = a\mathbf{f}_1 + b\mathbf{f}_2$, where *a* and *b* are constants you should determine in terms of α and β .

Probability

Consider that we have two fair six-sided dice. The value on the first die is *a* and on the second, *b*.

- P1 Compute Prob(a is odd) and Prob(a is prime). [By "Prob(a is x)" where "x" is some property we mean the total probability that a randomly chosen *a* has property x i.e. $\sum_{a \text{ has property } x} Prob(a)$.]
- P2 Compute (i) Prob(*a* is odd|*a* is prime) (ii) Prob(*a* is prime|*a* is odd) (iii) Prob(*a* is odd and *a* is prime). [The | denotes "given that".]
- P3 Show that Prob(a is odd and a is prime) = Prob(a is prime|a is odd) Prob(a is odd) and thatProb(a is odd and a is prime) = Prob(a is odd|a is prime) Prob(a is prime).
- P4 Let E(a) denote the expected (or expectation) value of a, $E(a) := \sum_{a} a \operatorname{Prob}(a)$. Compute E(a) and $E(a^2)$.
- P5 What are the possible values of a + b and their probabilities? Compute E(a + b) and verify that E(a + b) = E(a) + E(b).
- P6 What are the possible values of *ab* and their probabilities? Compute E(ab) and verify that E(ab) = E(a)E(b).