Complex numbers

C1 Write the complex number $z_{1}=\sqrt{2} e^{i \pi / 4}$ in the form $a+i b$ for real a and b.
C2 Write the complex number $z_{2}=1+\sqrt{3} i$ in polar form $r e^{i \theta}$.
C3 Let \bar{z} denote the complex conjugate of the complex number z. Write $\overline{z_{2}}$ in polar form.
C4 For any complex numbers w and z, show that $z \bar{z}=|z|^{2}, \overline{z w}=\bar{z} \bar{w}$ and $|z+w|^{2}=|z|^{2}+$ $|w|^{2}+\bar{z} w+z \bar{w}$.
C5 Show that $\left|1+e^{i \theta}\right|^{2}=4 \cos ^{2}(\theta / 2)$.
C6 Let $\omega=e^{2 i \pi / 3}$. Compute $\bar{\omega}$ and $|\omega|$. Show that $\bar{\omega}=\omega^{2}, \overline{\omega^{2}}=\omega$ and $\omega^{3}=1$. Show that $1+\omega+\omega^{2}=0$.

Matrices

Let us define the matrices

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

M1 Show that $\sigma_{x} \sigma_{y}=-\sigma_{y} \sigma_{x}, \sigma_{x}^{2}=\sigma_{y}^{2}=I_{2}, \sigma_{x}^{\dagger}=\sigma_{x}$ and $\sigma_{y}^{\dagger}=\sigma_{y}$. [M^{\dagger} denotes the Hermitian conjugate of the matrix M - i.e. the matrix derived from M by taking its transpose and the complex conjugate of each coefficient.]

M2 Show that the eigenvalues of σ_{x} are ± 1, and find normalised eigenvectors \mathbf{e}_{1} and \mathbf{e}_{2}. Show that these eigenvectors are orthogonal [i.e. $\overline{\mathbf{e}}^{T} \cdot \mathbf{e}_{2}=0$]

M3 Show that the eigenvalues of σ_{y} are ± 1, and find normalised eigenvectors \mathbf{f}_{1} and \mathbf{f}_{2}. Show that these eigenvectors are orthogonal [i.e. $\overline{\mathbf{f}}^{T} \cdot \mathbf{f}_{2}=0$].

M4 Show how to write an arbitrary (complex) 2-component vector $\mathbf{v}=\binom{\alpha}{\beta}$ in terms of the basis \mathbf{f}_{1} and \mathbf{f}_{2}. i.e. write $\mathbf{v}=a \mathbf{f}_{1}+b \mathbf{f}_{2}$, where a and b are constants you should determine in terms of α and β.

Probability

Consider that we have two fair six-sided dice. The value on the first die is a and on the second, b.
P1 Compute $\operatorname{Prob}(a$ is odd $)$ and $\operatorname{Prob}(a$ is prime). [By " $\operatorname{Prob}(a$ is $x)$ " where " x " is some property we mean the total probability that a randomly chosen a has property x i.e. \sum_{a} has property $\mathrm{x} \operatorname{Prob}(a)$.]
P2 Compute (i) Prob (a is odd $\mid a$ is prime) (ii) $\operatorname{Prob}(a$ is prime a is odd) (iii) $\operatorname{Prob}(a$ is odd and a is prime). [The | denotes "given that".]
P3 Show that
$\operatorname{Prob}(a$ is odd and a is prime $)=\operatorname{Prob}(a$ is prime $\mid a$ is odd $) \operatorname{Prob}(a$ is odd $)$ and that $\operatorname{Prob}(a$ is odd and a is prime $)=\operatorname{Prob}(a$ is odd $\mid a$ is prime $) \operatorname{Prob}(a$ is prime $)$.

P4 Let $E(a)$ denote the expected (or expectation) value of $a, E(a):=\sum_{a} a \operatorname{Prob}(a)$. Compute $E(a)$ and $E\left(a^{2}\right)$.
P5 What are the possible values of $a+b$ and their probabilities? Compute $E(a+b)$ and verify that $E(a+b)=E(a)+E(b)$.
P6 What are the possible values of $a b$ and their probabilities? Compute $E(a b)$ and verify that $E(a b)=E(a) E(b)$.

