Learning to match in online platforms

Milan Vojnovic Department of Statistics

Bristol Data Science Seminars, University of Bristol, UK, 27 February 2020

- Part I Adaptive matching for expert systems with uncertain task types
- Part II A test score approach to team selection

Part I

Adaptive matching for expert systems with uncertain task types

Joint work with L. Gulikers, L. Massoulie, and V. Shah

Operations Research, accepted for publication, 2019

Motivating application scenarios

employers – employees

cars – passengers

travelers – housing facilities

questions – answers

Matching problem formulation

Key questions

- What throughput can be achieved by service systems with uncertain task types by learning while matching tasks to servers?
- What policies can achieve optimal throughput?

Problem formulation

- Each task is of a hidden (latent) class, from a finite set *C* of classes
- Each server can serve at most 1 task at any time with processing rate μ_s
- Server s succeeds to solve a task of class c according to an independent Bernoulli (p_{s,c}) random variable
- Bayesian framework: prior distribution for class type π

Classical case: scheduling flexible servers

• No uncertainty:

- Known task classes
- Known processing rates

• Goal:

• Minimize a long-term cost, defined as a function of queue sizes or job waiting times

• Optimality of simple policies in some regimes:

• *cµ*-scheduling policy

Learning from failures

Probability of failure:

$$\psi_s(z) = \sum_{c \in C} (1 - p_{s,c}) z_c$$

Prior distribution of task type:

 \boldsymbol{Z}

 \mapsto

Posterior distribution of task type:

$$z' = \phi_s(z) = \left(\frac{\left(1 - p_{s,c}\right)z_c}{\psi_s(z)}, c \in C\right)$$

Optimal stability region

• Thm Assume there exits server s such that $p_{s,c} > 0$ for all $c \in C$.

If there are variables $v_{s,c} \ge 0$ and $\delta_s > 0$ for $s \in S$ and $c \in C$ such that

 $\lambda \pi_{z'} + \sum_{s \in S, z \in Z: \phi_s(z) = z'} \nu_{s, z} \psi_s(z) = \sum_{s \in S} \nu_{s, z'} \text{ for all } z' \in Z \quad \text{(flow conservation)}$

and

 $\sum_{z' \in Z} v_{s,z'} + \delta_s \le \mu_s$ for all $s \in S$

(capacity constraint)

then, there exists a policy under which the system is stable.

Otherwise, there is no policy under which the system is stable.

Throughput optimal policy: challenges

- Natural approach: associate a queue with each task type *z*
- Challenge: an infinite number of queues (unlike to classical queueing systems)

Naïve greedy policy

 At each time when there is a free server s and a task waiting to be served, assign s to a task with maximum success probability according to the posterior distribution of task class:

 $z(s) \in \operatorname{argmax}_{z \in Z: N_z > 0} \left(1 - \psi_s(z) \right)$

with random tie break

Not throughput optimal

Special case: Asymmetric (a) system

• Arrival type:

$$(z_{c_1}, z_{c_2}) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

 Upon a failed attempt for a task of type z, the task becomes of type z' where

 $(z'_{c_1}, z'_{c_2}) = (1,0)$

• Set of task types $Z = \{z, z'\}$

Asymmetric (a) system: optimal stability region

• Optimal stability region:

 $\lambda < \lambda^{\star}(a)$

where

 $\lambda^{\star}(a) = \min\left\{2a, \frac{3a}{a+1}\right\}$

Stability region of random and greedy policies

15

Optimal stability region: intuition

- For small values of a, the main bottleneck is s_1 serving tasks of class c_1
- The extra capacity of server s_2 can be used to identify class c_1 tasks
- For large values of *a*, both servers are bottleneck, and thus identifying class *c*₂ tasks results in a throughput loss

Backpressure (Y) policy

• Key idea: bundle task types to make the total number of queues finite

Backpressure (Y) priority index:

$$w_{s,z}(\widetilde{N},X) = \begin{cases} \widetilde{N}_z - \psi_s(z)\widetilde{N}_{\phi_s(z)} & \text{if } \phi_s(z) \in Y \\ \widetilde{N}_z - \psi_s(z)X & \text{if } \phi_s(z) \in Z \setminus Y \end{cases}$$

Backpressure (Y) policy

• Algorithm: when assigning sever *s*, if

$$X \leq \frac{\sum_{s' \in S} \mu_{s'} \max_{z \in Y: \ \widetilde{N}_Z > 0} w_{s',z}(\widetilde{N},X)}{\min_{c \in C} \sum_{s' \in S} p_{s',c} \mu_{s'}}$$

then, assign a task of type in $B_s(\tilde{N}, X)$ to s with random tie break where

$$B_{S}(\widetilde{N}, X) = \underset{z \in Y: \ \widetilde{N}_{z} > 0}{\arg \max w_{S,z}(\widetilde{N}, X)}$$

else, assign a task chosen uniformly at random from $Z \setminus Y$

Throughput optimality of Backpressure (Y)

• Thm: Assume there exits server s such that $p_{s,c} > 0$ for all $c \in C$.

If the sufficient conditions for stability hold, then there exists a finite subset Y of the set of task classes Z such that Backpressure (Y) policy is throughput optimal.

Experimental results: Math StackExchange

2 Answers

				Hint:			
			5	$\Phi - 1 = \frac{\sqrt{5} - 1}{2} = \frac{5 - 1}{2(\sqrt{5} + 1)} = \frac{5}{2}$	$\frac{2}{\sqrt{5}+1} < 1 \text{ and } > 0$		
StackExchange Q Search on Mathematics				$\implies 1 - \Phi < 1 \text{ and } \left \frac{1 - \Phi}{\Phi} \right < 1$			
🇘 MATH	IEMATICS			Divide the numerator and the denor	ninator by Φ^n		
Home Questions	Proving $\lim_{n\to\infty} \frac{\Phi^{n+1} - (1-\Phi)^{n+1}}{\Phi^n - (1-\Phi)^n} =$	Φ		share cite improve this answer	edited 1 hour ago	answered 1 hour ago	
Tags	Asked today Active today Viewed 39 times			1 @user1992, Thanks for the observation	on – <mark>lab bhattacharjee</mark> 1 hour ago		
Unanswered	$\Phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio		1 @user1992, Rectified – lab bhattacharjee 1 hour ago				
	2 I'm having hard time using proving that			add a comment			
	$\lim_{n \to \infty} \frac{\Phi^{n+1} - (1-\Phi)^{n+1}}{\Phi^n - (1-\Phi)^n} = \Phi$ dividing both the numerator and denominator by Φ^n doesn't help, neither does			Use <u>How do I prove Binet's Formula?</u> $\alpha^m - \beta^m$			
	$\Phi^n - (1 - \Phi^n) = (2\Phi + 1) \sum_{i=0}^{n-1} \Phi^i (1 - \Phi)^{n-1-i}$		2	if $F(m) = \frac{r}{\alpha - \beta}$ with α, β are the	ne roots of		
	Where is the trick?				$t^2 - t - 1 = 0$		
	calculus sequences-and-series golden-ratio			we can prove			
	share cite improve this question	asked 1 hour age			$F_{n+2} = F_{n+1} + F_n$		
		Fritjof Larsson 107 ▲ 5			$\frac{F_{n+2}}{F_{n+1}} = 1 + \frac{1}{\frac{F_{n+1}}{E}}$		
	4 I think that dividing the numerator and denominator by Φ^n is helpful. – Lord Shark the Unknown 1 hour ago			If $\lim_{n\to\infty} \frac{F_{n+2}}{F_{n+1}} = r > 0$,	1 n		
	aut a comment			$r = 1 + \frac{1}{r} \iff r^2 - r - 1 = 0, r = ?$			
				share cite improve this answer		answered 1 hour ago	

answered 1 hour ago lab bhattacharjee 243k ● 15 ■ 170 ▲ 292

add a comment

Dataset

702,286 questions 994,138 answers

For each (user, tag) pair, the success probability estimated by empirical frequency

Expert classes computed by using k-means clustering

Inferred expert skills:

Expert Clusters										
Tags	1	2	3	4	5	6	7	8	9	10
calculus	.32	.39	.30	.35	.37	.47	.28	.16	.26	.41
real-analysis	.17 $ $.41	.25	.32	.23	.49	.40	.10	.10	.44
linear-algebra	.46	.29	.05	.36	.14	.48	.26	.31	.07	.43
probability	.07	.49	.02	.33	.02	.50	.06	.02	.46	.04
abstract-algebra	.02	.05	.03	.32	.02	.38	.23	.50	.01	.27
integration	.09	.43	.05	.19	.44	.45	.03	.01	.06	.37
sequences-and-series	.05	.32	.16	.31	.20	.45	.09	.04	.06	.33
general-topology	.02	.10	.03	.16	.02	.43	.50	07	.02	.31
combinatorics	.03	.14	.06	.43	.04	.37	.02	.06	.19	.05
matrices	.27	.15	.02	.31	.02	.44	.06	.11	.02	.34
$\operatorname{complex-analysis}$.02	.19	.08	.16	.14	.50	.09	.05	.01	.44
Size	165	188	313	200	179	183	231	187	178	176

Estimated parameters used in simulations for different question arrival rates λ

Queue backlog: Backpressure vs greedy

Average delay: Backpressure vs greedy

Part I – summary points

- Backpressure type policy for assigning tasks to servers with uncertain task types
- Shown to be throughput optimal
- Greedy and random policy can be substantially suboptimal
- Backpressure policy not easy to implement, but provides guidelines for designing simple-to-implement heuristic policies

Part II

A Test score approach to team selection

Joint work with S. Sekar and S. Yun

Management Science, accepted for publication, 2019

Problem formulation

• Selection of a subset of items of given cardinality from a pool of candidate items

Problem formulation (cont'd)

• Partition items to groups

Motivating application scenarios

- Recommender systems
- Feature selection for learning models
- Online platforms
- Combinatorial auctions
- Sensor placement
- Influence maximization in social networks

Challenges

Group valuations:

value of a group of items may depend on the values of individual items in a complicated way

E.g. complements or supplements

Computation complexity: selection or assignment of items typically amounts to solving combinatorial optimization problems that are NP hard

Uncertainty:

uncertainty of individual item values may affect the expected value of a group of items in subtle ways

E.g. predictable vs high-risk high-return items

Need for simple algorithms: it is common assign items to groups by simple algorithms using individual item scores

E.g. select a set of items with highest individual item scores

Benefits of algorithms based on item scores

- Dynamic environments: scalability for changing pools of candidate items
 - Individual item scores only need to be computed once and do not need to be recomputed when the set of candidate items changes
- Distributed computation: algorithms for selection and assignment based on individual item scores are easy to implement in distributed systems
- Oracle queries: individual item scores may require estimating value of groups of items only for identical or similar items
- Conceptual simplicity: selection of items based on individual item scores is easy to understand by end users

Key questions

- Can algorithms that assign items to groups based on individual item scores achieve close to optimal group performance?
- If so, what are individual item scores that can guarantee this?
- How do simple, natural individual item scores perform?

Stochastic optimization problem formulation

• Given a ground set of elements $N = \{1, 2, ..., n\}$, valuation function $f: 2^N \times \mathbb{R}^n \to \mathbb{R}_+$ feasible set $\mathcal{F} \subseteq 2^N$, and distribution P: find $S^* \in \mathcal{F}$ that is a solution to:

$$\max_{S\in\mathcal{F}} u(S) \coloneqq \mathbf{E}_{\mathbf{X}\sim P}[f(S,\mathbf{X})]$$

- Assumptions:
 - $\mathcal{F} = \{ S \in 2^N \colon |S| = k \}$
 - $f(S, \mathbf{x}) = g(M_S(\mathbf{x}))$ where $g: \mathbb{R}^n_+ \to \mathbb{R}_+$ is a symmetric monotone submodular value function
 - $X = (X_1, X_2, ..., X_n)$ are independent random variables, $X_i \sim P_i$

Note: $M_S(x)_i = x_i$ if $i \in S$ and $M_S(x)_i = \phi$ otherwise (ϕ is a minimal element)

Examples of valuation functions

Diminish returns of total value:	Constant elasticity of substitution (CES):				
$g(\mathbf{x}) = \bar{g}(\sum_{i=1}^{n} x_i)$	$g(\mathbf{x}) = (x_1^r + x_2^r + \dots + x_n^r)^{1/r}$ for $r > 0$				
where $ar{g}$ is increasing concave	diminishing returns for $r \ge 1$				
Best-shot:	Success probability:				
$g(\mathbf{x}) = \max\{x_1, x_2, \dots, x_n\}$	$g(\mathbf{x}) = 1 - \prod_{i=1}^{n} (1 - p(x_i))$				
Top-r:	where $p: \mathbf{R} \rightarrow [0,1]$, increasing				
$g(\mathbf{x}) = x_{(1)} + x_{(2)} + \dots + x_{(r)}$ for $1 \le r \le n$					
where $x_{(1)}, x_{(2)}, \dots, x_{(n)}$ are values x_1, x_2, \dots, x_n arranged in decreasing order					

Computation by using test scores

- Computation model introduced in [Kleinberg and Raghu 2015]: an algorithm has access only to (estimates) of individual item scores (test scores)
- We can think of test scores as a mapping from (g, \mathcal{F}, P_i) to a real value:

 $a_i = h(g, \mathcal{F}, P_i)$

• The sample mean version:

$$a_i = \frac{1}{T} \sum_{t=1}^{T} \varphi \left(X^{(t)}; g, \mathcal{F}, P_i \right)$$

where $x \mapsto \varphi(x; g, F, P_i)$ is given and $X^{(t)}$ are independent samples from P_i^d

Examples of test scores

• Mean test scores:

$$a_i = \mathbf{E}_{X_i \sim P_i}[X_i]$$

 $a_i = q_i(\theta)$

• Standard quantile test scores:

where $q_i(\theta)$ is the θ -quantile $q_i(\theta) = \inf\{x \in \mathbf{R}: P_i(x) \ge \theta\}$

- Quantile test scores:
- $a_i = \mathbf{E}_{X_i \sim P_i}[X_i \mid P_i(X_i) \ge \theta]$

Main result: approximation guarantee

• Thm. Assume g is a symmetric monotone function that satisfies the extended submodularity condition: for all x, y such that $g(x) \le g(y)$,

 $g(\mathbf{x}, z) - g(\mathbf{x}) \ge g(\mathbf{y}, z) - g(\mathbf{y})$ for all $z \in \mathbf{R}_+$

Then, there exist test scores that guarantee a (1 - 1/e)/(5 - 1/e)-factor approximation.

• In particular, the theorem holds for replication test scores:

 $a_i = \mathbf{E}_{\mathbf{X} \sim P_i^k}[g(\mathbf{X})]$

(Expected value of a virtual set of independent copies of an item.)

 Proof based on a new approach that reduces the optimization problem to approximating the objective function by "sketch" functions

Stochastic submodular welfare maximization

maximize $\sum_{i=1}^{m} u_j(S_j)$ over $S_1, S_2, \dots, S_m \in 2^N$ subject to: $|S_j| = k_j \text{ for } j = 1, 2, \dots, m$ $S_i \cap S_j = \emptyset$ for all $i \neq j$

$$u_j(S_j) := \mathbf{E}\left[g_j\left(M_{S_j}(X_{1,j},\ldots,X_{n,j})\right)\right]$$

 $X_{i,j}$ are independent random variables, $X_{i,j} \sim P_{i,j}$ g_j is a symmetric monotone submodular value function

Approximation for welfare maximization

• Thm. Suppose that valuation functions satisfy the extended submodularity condition and let *k* denote the largest cardinality constraint.

Then, there exists a test score algorithm using replication test scores that guarantees a $1/(24(\log(k) + 1))$ -factor approximation.

 Proof based on the same framework as for maximizing a stochastic submodular function subject to a cardinality constraint, but using a different sketch and a more intricate greedy assignment algorithm

Greedy algorithm for welfare maximisation

Input: *N*, *M*, replication test scores $a_{i,j}^r = \mathbf{E}_{X \sim P_i^r} [g_j(X)]$ Initialization: $S_1, S_2, \dots, S_m = \emptyset, A = N, P = M$ while |A| > 0 and |P| > 0 do:

$$(i^*, j^*) = \arg \max_{(i,j) \in A \times P} \frac{a_{i,j}^{|S_j|+1}}{|S_j|+1}$$
$$S_{j^*} \leftarrow S_{j^*} \cup \{i^*\} \text{ and } A \leftarrow A \setminus \{i^*\}$$
$$\text{if } |S_{j^*}| = k_{j^*} \text{ then } P \leftarrow P \setminus \{j^*\}$$
$$\text{Output: } S_1, S_2, \dots, S_m$$

Part II – summary points

- Test score selection of items can provide a constant-factor approximation for a broad class of submodular utility functions
- This is guaranteed by a special type of test scores: replication test scores
- Submodular welfare maximization: $\Omega(1/\log(k))$ -approximation by replication test scores, where k is the maximum number of assignments to a project