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Forecasting



Energy Forecasting

• Management of resources and infrastructure is planned 

in advance:

– Scheduling large power stations and industrial processes

– Storing fuel (coal/biomass, petrol/diesel, natural gas, water…)

– Flows in space and between “energy vectors” is constrained

One big (stochastic) optimisation 
problem!



Energy Forecasting

It is getting much 
harder to manage!

https://www.ofgem.gov.uk/data-portal/electricity-generation-mix-quarter-and-fuel-source-gb

25% Wind + Solar in 
Q3-2019!!!

https://www.ofgem.gov.uk/data-portal/electricity-generation-mix-quarter-and-fuel-source-gb


• Then:

– Day-ahead demand 
forecast error: <2%

– Schedule generation to 
meet demand

• Now:

– Day-ahead net-demand forecast 
error: >2%

• Especially on sunny days!

– National wind forecast error: 4%
• of installed capacity

• Some days can be much higher!!!

– Schedule generation met meet 
net-demand…

– …and provide flexibility to 
manage forecast errors and 
ramps

Energy Forecasting



End-use: Power System Operation

Supply and demand must balance 
second-by-second!

Subject to:

• Network constraints

• Security criterion
– Total reserve

– Regional reserve

– Angle and voltage stability

– …

NB: Today only managed at transmission 
level, will be managed at distribution level in 
the future



End-use: Markets

Energy must be bought and sold 

ahead of time:

• Generation and supply portfolio 

effects

• Offering flexibility services as  

well as energy

• Uncertainty in price and volume

• Risk preferences

NB: This could apply at the local 

level in the future too!
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https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract

As of Dec 2019:
• 987 Wind Farms
• 1379 Solar Farms (+domestic PV)

Weather-dependent Generation

https://www.gov.uk/government/publications/renewable-energy-planning-database-monthly-extract


Demand Hierarchy (GB)

•Smooth profile
•Significant impact of embedded 
generation1 Transmission System

•Smooth profile
•Penetration of embedded 
generation varies14 Regions

•Variable characteristics
•Some diversity of connected loads

•Some dominated by large loads or 
embedded generation

>350 Grid Supply 
Points

•Variable characteristics
•Some diversity of connected loads

•Some dominated by large loads or 
embedded generation

>400,000 Primary and 
Secondary Substations

•Highly volatile and diverse 
characteristics

•Many states/profiles, even 
individual meter

>40,000,000 (Smart) 
Meters

Net-demand, 
interconnectors, pump-

storage (10s GW)

Large regions (GW)

Homes and businesses, wind 
and solar (10s-100s MW)

Homes and businesses, wind 
and solar (<1-100s MW)

Dommestic or business 
demand less domestic solar 

and micro wind (kW)



Demand Hierarchy (GB)

•Smooth profile

•Significant impact of embedded 
generation1 Transmission System

•Smooth profile

•Penetration of embedded 
generation varies14 Regions

•Variable characteristics

•Some diversity of connected loads

•Some dominated by large loads or 
embedded generation

>350 Grid Supply 
Points

•Variable characteristics

•Some diversity of connected loads

•Some dominated by large loads or 
embedded generation

>400,000 Primary and 
Secondary Substations

•Highly volatile and diverse 
characteristics

•Many states/profiles, even 
individual meter

>40,000,000 (Smart) 
Meters



Part 2: Leveraging turbine-level 

data for wind power forecasting
Work with Ciaran Gilbert and David McMillan

IEEE Trans. Sustainable Energy
https://doi.org/10.1109/TSTE.2019.2920085



• Weather is a prediction, and 
therefore uncertain

• Single wind speed and 
direction for wind farm

• Wind farm power curve is 
complex and uncertain

…

“Site” Wind Speed and 
Direction Forecast

Wind Turbine SCADA

4D Grid of Weather 
Predictions

Weather-to-power 
relationship…

Status Quo

Windfarm Export 
Meter



Status Quo
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Status Quo
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Engineered features capture:
• common NWP biases, phase 

and spatial errors
• variation across large areas
• wider weather situation and 

indicators of uncertainty…

Feature 
Engineering

Wind Turbine SCADA

4D Grid of Weather 
Predictions

Weather-to-power 
relationship…

Recent evolution…

Windfarm Export 
Meter

*Andrade & Bessa (2017), doi:10.1109/TSTE.2017.2694340



Turbine-level data enables:
• reduction in epistemic 

uncertainty
• direct incorporation of 

availability
• advanced very short-term 

forecasting

…

Feature 
Engineering

Wind Turbine SCADA

4D Grid of Weather 
Predictions

Weather-to-power 
relationship…

The next evolution?

*Gilbert, Browell & McMillan (2019), doi:10.1109/TSTE.2019.2920085

Windfarm Export 
Meter



Hierarchies in Forecasting

Motivation:

1. Gather as much information as possible to 

improve forecast skill

• Electricity network is a natural hierarchy

• Turbine – Farm – Region – National/Zone

• Information from other levels can improve predictive 

performance

2. Coherency across hierarchy

• Some applications require that forecasts from lower level 

to sum to upper level, e.g. market settlement
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Hierarchies in Forecasting

• Wind farm power curve is complicated by 

many factors: layout, terrain, interactions

• It is difficult to distinguish between random 

variation and true processes…

• …can looking at individual turbine behaviours 

can help extract more signal from the noise?



Hierarchies in Forecasting



Methodology Overview

Objective
• Extend forecasting methodologies to incorporate turbine-level 

information
• Produce improved probabilistic (density) forecasts

Benchmarks (using NWP and windfarm data only)
1. Analog Ensemble (kNN) – super robust and competitive
2. GBM/quantile regression – leading machine learning algorithm

New Approaches
1. Bottom-up: predict energy production for individual turbines 

and use as additional explanatory information
2. Spatial Dependency: predict the full joint distribution of energy 

production from all turbines in a wind farm



Objective: Density Forecasts



Benchmark

GBM

• Gradient Boosted Decision 
Tree – a powerful non-linear 
function approximator

• Quantile regression: one 
model per quantile: 5,…,95

• Inputs: features derived 
from NWP

• Target: Windfarm power

𝑞𝛼 = 𝑓GBM
𝛼 (𝒙NWP)

Density forecast for wind 
farm



Bottom-up Approach

Bottom-up

1. Produce deterministic 
forecasts for each individual 
turbine

2. Use these as additional 
features in a windfarm 
power forecasting model

𝒙(1) 𝒙(2) 𝒙(3) 𝒙(4)

…

𝑞𝛼 = 𝑓GBM
𝛼 (𝒙NWP, 𝒙1, … , 𝒙𝑁)

Density forecast for wind 
farm

𝒙(𝑁)



Density forecast for wind 
farm = Distribution of sum 

of all turbines

Spatial Dependency Approach

Spatial Dependency Approach

1. Produce density forecast for 
each turbine

2. Model spatial dependency 
using Gaussian copula with 
parametric covariance

3. Sample and sum turbine 
power prediction

4. Construct wind farm density 
forecast from samples

…

Joint Predictive Distribution
Individual turbine density forecasts

AND spatial dependency model

𝑞1
𝛼 = 𝑓GBM,1

𝛼 (𝒙NWP)

𝑞2
𝛼 = 𝑓GBM,2

𝛼 (𝒙NWP)

𝑞3
𝛼 = 𝑓GBM,3

𝛼 (𝒙NWP)

𝑞4
𝛼 = 𝑓GBM,4

𝛼 (𝒙NWP)

Additional Benchmarks:
1. Empirical Covariance (training data)
2. Vine Copula (facilitates more complex 

spatial structure)



Case Study

Set up

• 2 Wind Farms with 56 and 35 turbines
• NWP inputs plus engineered features
• 30 minute wind farm production
• 30 minute wind turbine production
• Produce probabilistic (density) forecasts up to 48h ahead



Spatial Structure at WF-A

Σ𝑖,𝑗 = exp −
Δ𝑠𝑖,𝑗

𝜂

Δ𝑠𝑖,𝑗

Only one parameter 
to estimate



Spatial Structure at WF-B



Results: Reliability

Best Benchmark
Spatial Dependency

WF-B

WF-A



Results: CRPS
Continuous Ranked Probability Score
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Results: Scores

Windfarm Score
Best 

Benchmark
Bottom-up

Full Spatial 
Model

WF-A
MAE 9.69 9.27 9.11 (6%)

CRPS 7.02 6.74 6.66 (5%)

WF-B
MAE 11.39 11.21 (2%) 11.26

CRPS 8.10 8.00 (1%) 8.02

Additional benchmarks…
Empirical Covariance and Vine Copula 

…performance a little worse than parametric covariance model.



Results: Scores
Significance of improvement: sampling variation

WF-BWF-A

Best
Benchmark

Spatial 
Dependency

Best
Benchmark

Bottom-up

Recommended Practice 
(coming up next!)

&
Forthcoming paper in 

Wind Energy by IEA Task 
Members



Part 3: Some challenges in 

energy forecasting



What do we want to predict 

anyway?

• Energy: Blocks of energy for trading and 
scheduling

• Power: ramps for system operation; 
instantaneous power for ancillary service 
provision

• Interdependency with markets: risk 
management, algorithmic trading

• Network flows/constraints: constraint 
management and regional balancingForecast integrated 

within Decision Support

Forecasts presented to 
decision maker

Events: Timing 
and severity

Compound 
Variables

Complex 
Interactions



What do we want to predict 

anyway?
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• Value: reducing peak demand to avoid need for network 
reinforcements

• Driver: Individual peaks and group diversity

• Prediction: Auto-regression/OLS not appropriate! Possibly some 
sort of generative model?

• Evaluation: Event-based? Reproduction of characteristics/statistics?



Very short-term
Challenge: AR with bounded process



Censored Distributions
• Censored Normal

Transformation
• Copula
• Logarithmic

𝑦 = ln
𝑥

1 − 𝑥
, 𝑥 ∈ (0,1)
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Very short-term
Challenge: AR with bounded process
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Very short-term
Challenge: AR with bounded process

“Solutions”
1. Aggregation
2. (Markov) switching
3. Censoring



Change Points
For model training and operational forecasting



Summary

• Energy forecasting is in increasing demand, both practice 
and end-use is evolving rapidly
– Data-science driving innovation

– Forecasts should get a little better

– Potentially more value will come from improving the way we 
use forecast information in the future…

• We can leverage existing sources of data to improve wind 
power forecast with software alone!

• Forecasting needs to be better connected to use-cases:
– Events are often more important than time series (which can be 

misleading)

– Decision-support for spatially-constrained problems: regional 
balancing, network constraints



Thanks!
Papers and more at jethrobrowell.com


