Self-Supervised Multimodal Sensor Fusion for Human Actvity Recognition

Robert Piechocki¹, Kevin Chetty², N.D. Lane³, Mohammud J. Bocus¹

¹School of Computer Science, Electrical and Electronic Engineering, and Engineering Maths, University of Bristol

² Department of Security and Crime Science, University College London

³ Department of Computer Science & Technology, University of Cambridge

1. Introduction

- > Sensors such as Wi-Fi are particularly promising for in-home healthcare applications.
- Most passive Human Activity Recognition (HAR) deep learningbased systems are unimodal, i.e., they use information from only one type of sensor.
- Propose to use multiple synchronised sensors, or views, to MODALITY 1 improve the performance of a passive HAR system.
- Learn shared representation across different data types in a fully self-supervised manner, thus avoiding the need to label a huge amount of data, which is time-consuming and expensive.

(a) Figure 1. Multimodal Sensor Fusion: (a) Decision fusion, (b) Feature fusion, (c) Our technique: fusion in the latent representation with optional compressed sensing measurements; F features, p(z) prior model, G generators, X complete data, Y subsampled data.

(b)

2. Results - Multimodal Sensor Fusion in the Latent Representation Space

Algorithm 1 Multimodal Sensor Fusion in the Latent Representation Space (SFLR)

1: Training data: $\mathscr{D}_{\mathscr{T}} \equiv \{X_{1:M}^{(1:I)}\}$, Test data $\mathscr{D}_{\mathscr{P}} \equiv \{X_{1:M}^{(1:J)}\}$, Samplers $\{\chi_{1:M}\}$					
2: Stage 1: Train M-VAE using $\mathscr{D}_{\mathscr{T}}$ Full data in first stage					
3: Output: $p(z)$, Encoders $\{\phi_{1:M}\}$, Decoders $\{\psi_{1:M}\}$	n loornablo				
4: Stage 2: Fusion	n-learnable				
5: $y_{1:M}^{(i)} \sim \mathscr{D}_{\mathscr{P}}$ subsampled data in 2	2 nd stage				
6: Sample the initial point $z^0 \sim p(z)$ Sample from prior					
7: while not converged do					
8: $z \leftarrow z - \eta_0 \nabla_z(\ z\ ^2) - \eta_1 \nabla_z(\ y_1^{(i)} - \chi_1(\psi_1(z))\ ^2)$ One of	or several				
9: $z \leftarrow z - \eta_0 \nabla_z(z ^2) - \eta_2 \nabla_z(y_2^{(i)} - \chi_2(\psi_2(z)) ^2)$ SGD	steps are				
taken	for each				
10	ty in turn.				
11: $z \leftarrow z - \eta_0 \mathbf{v}_z(z) - \eta_M \mathbf{v}_z(y_M - \chi_M(\psi_M(z)))$ (moduli	cy in conn.				
13: $\chi_{MAP} \leftarrow \chi$ 14: Downstream tasks: $\hat{x}_{1} = \chi_{1}(\hat{z}_{1},, z)$ classification tasks $K NN(\hat{z}_{1},, z)$					
14: Downstream tasks: $x_m = \psi_m(z_{MAP})$, classification tasks K-ININ (z_{MAP})					
MAP estimation procedure cons	ists of	2			
MAP estimation procedure cons	ists of I decoder	2			
MAP estimation procedure cons backpropagating through the sampler and	ists of I decoder	2			
MAP estimation procedure cons backpropagating through the sampler and using Stochastic Gradient Descent (SGD).	ists of I decoder	2 1 1			
MAP estimation procedure cons backpropagating through the sampler and using Stochastic Gradient Descent (SGD). $\hat{z}_{MAP} = \arg \max p\left(z Y_{1:M} = y_{1:M}^{(i)}\right) \propto \exp(- z ^2) \prod_{j=1}^{M} \exp(-\frac{1}{ z ^2}) y_m^{(i)} $	ists of decoder $-\chi_m(\psi_m(z)) ^2)$.	2 1 1			
MAP estimation procedure constants backpropagating through the sampler and using Stochastic Gradient Descent (SGD). $\hat{z}_{MAP} = \arg \max_{z} p\left(z Y_{1:M} = y_{1:M}^{(i)}\right) \propto \exp(- z ^2) \prod_{m=1}^{M} \exp(-\frac{1}{2\sigma_m^2} y_m^{(i)})$	ists of $\ \mathbf{decoder} \ ^2 - \chi_m(\psi_m(z)) \ ^2$.	2 1 1 F			
MAP estimation procedure cons backpropagating through the sampler and using Stochastic Gradient Descent (SGD). $\hat{z}_{MAP} = \arg \max_{z} p\left(z Y_{1:M} = y_{1:M}^{(i)}\right) \propto \exp(- z ^2) \prod_{m=1}^{M} \exp(-\frac{1}{2\sigma_m^2} y_m^{(i)})$	ists of decoder $-\chi_m(\psi_m(z))\ ^2$.	2 1 1 F			
MAP estimation procedure constructions backpropagating through the sampler and using Stochastic Gradient Descent (SGD). $\hat{z}_{MAP} = \arg\max_{z} p\left(z Y_{1:M} = y_{1:M}^{(i)}\right) \propto \exp(-\ z\ ^2) \prod_{m=1}^{M} \exp(-\frac{1}{2\sigma_m^2} \ y_m^{(i)} - y_m^{(i)}\ _{2}^2)$ Objective to minimize: $\mathscr{L}(z) = \lambda_0 \ z\ ^2 + \sum_{i=1}^{M} \lambda_m \ y_m^{(i)} - y_m^{(i)}\ _{2}^2$	ists of decoder $- \chi_m(\psi_m(z)) \ ^2$.	2 1 1 F			

Figure 3. Trained Latent Space (6 clusters = 6 activities)

Table 1. Few-shot learning classification results (F1 macro) for HAR

		1 example per class	5 examples per class	10 examples per class
-	2-channel CNN	0.4273	0.5709	0.6185
•	1-channel CNN (Modality 1)	0.3491	0.4513	0.5045
	1-channel CNN (Modality 2)	0.4466	0.6000	0.6057
).	Probability fusion (product rule)	0.4404	0.5847	0.6419
2.	Dual-branch CNN	0.5082	0.5688	0.5759
	SFLR (ours)	0.6527	0.7182	0.7375

Figure 4. Recovery with compressed sensing measurements as low as 784 out of 50,176 (1.56%).

Figure 5 Recovery under additive Gaussian noise (std dev. = 0.4).

3. Results - Multimodal Fusion Transformer for Passive HAR

4. Conclusions

- > Multimodal sensor fusion brings performance improved for downstream tasks such as Human Activity Recognition (HAR), which serves a vital role in the E-Health paradigm.
- Pretraining models such as

Variational Autoencoder (MVAE) and multimodal Vision Transformer (ViT) self-supervised fashion а outperforms non-pretrained models under few-shot learning (i.e. under the condition that few labelled samples are available).

References

[1] Bocus, M.J., Li, W., Vishwakarma, S. et al. OPERAnet, a multimodal activity recognition dataset acquired from radio frequency and vision-based sensors. Sci Data 9, 474 (2022). [2] Piechocki, R. J., Wang, X. and Bocus, M. J., "Multimodal sensor fusion in the latent representation space", 2022, https://arxiv.org/abs/2208.02183.

[3] Koupai, A. K., Bocus, M. J., Santos-Rodriguez, R., Piechocki, R. J. and McConville, R., "Self-Supervised Multimodal Fusion Transformer for Passive Activity Recognition ", 2022, https://arxiv.org/abs/2209.03765.

Engineering and Physical Sciences Research Council

IRC Next Steps Plus: OPERA – Opportunistic Passive Radar for Non-Cooperative Contextual Sensing (2019-2022, £1.36M, EP/R018677/1)