

Modal nudging and elastic tailoring for blade stiffened wing structures

Lichang Zhu

Supervisors: Rainer Groh, Mark Schenk, Jiajia Shen and Alberto Pirrera

Engineering and Physical Sciences Research Council

Background

- Wing: 40% structural weight
- Wing panel: the largest part of wing
- Thin-walled structure
- -1kg = -25 tons CO₂/lifetime

Engineering and Physical Sciences

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

2

Example 1

- Variables
 - Panel thickness
 - Stringer thickness
 - Stringer height
 - No. stringers (maximum 7)
- Optimisation settings
 - Objective: lightweight
 - Constraints
 - Failure load > 30kN
 - No instability
 - von Mises stress < 280MPa
- Nonlinear analysis (ABAQUS Riks)

Globally optimised result

Engineering and

Example 1

- Imperfection sensitivity analysis
- Each dot is a nonlinear analysis

An imperfection sensitive design

Imperfection Size [mm]

Material failure

Stability failure

Imperfection sensitive

University of BRISTOL

Design paradox

Weight reduction as objective

All failure modes happen at once

Imperfection sensitive design

Material capacity wasted

Engineering and Physical Sciences Research Council

Paradigm shift

- Avoiding post-buckling \rightarrow embracing post-buckling

Post-buckling ≠ structural failure

- Post-buckling as design space:
 - Reduce weight by 6.7%
 - Remove imperfection sensitivity

Engineering and Physical Sciences Research Council

Example 2

- Identical optimisation settings
- Undulating stringers as a design feature

University of BRISTOL

Imperfection sensitivity

Example 1

Imperfection Size [mm]

Imperfection Size [mm]

Engineering and Physical Sciences Research Council EPSRC C

Conclusions

- A method to reduce geometric imperfection sensitivity by using undulating stringers
- Maintains smooth aerodynamic profile
- 6.7% weight reduction for the same target load

Engineering and Physical Sciences Research Council

Bristol Composites Institute

Thank you!

Lichang.Zhu@bristol.ac.uk

КК

Engineering and Physical Sciences Research Council

