

Bristol Composites Institute

A Qualitative and Quantitative Benchmarking Review of Resin Infusion Simulation Software

Speaker: Kieran Guoite

Supervisors: Dr Chris Dighton, Dr Cristian Lira, Prof. Ole Thomsen, Dr Jonathan Belnoue

BCI Annual Symposium 2025

bristol.ac.uk/composites

"The Industrialisation of Large-Scale Resin Infusion Simulations"

"Chapter 1: Selection" "Chapter 2: Simplification" "Chapter 3: Acceleration" "Chapter 4: Actuation"

Presentation Contents

- Project Background
- Software Identification and Classification
- Qualitative Comparison
- Quantitative Comparison
- Next Steps and Future Work

Why?

- Composites have desirable properties for Aerospace, Wind, Automotive, and Maritime
- Parts are growing in size and number for both economics and environment
- This is a problem for conventional manufacturing methods

[5]

Prepreg [1]

Resin Infusion [2]

Simulation

- Simulations attractive as Physical Testing becomes exhaustive and impractical
- Problems with practical usage
 - Excessive Computational Cost
 - Uncertain Material Properties
 - Difficulties modelling fine details
- Overall Low trust and low transparency of capabilities/accuracy [3]

Identification

• 9 Initial software identified and assessed

7

Qualitative										9
						With		Not		
			Key: 🗸	🖊 Supporte	d√	Workarou	nds <mark>x</mark>	Sup	ported	
Software/	Forming	Viscosity	Cure	Defect			3D Layer		Multi-	
Parameter	Effects	Evolution	Integration	Modelling	Control	Scripting	Flow	Gravity	Core	
PAM-RTM	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\checkmark\checkmark$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	
LMAT	\checkmark	$\sqrt{}$	$\sqrt{}$	$\checkmark\checkmark$	$\sqrt{}$	$\checkmark\checkmark$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
LIMS	\checkmark	\checkmark	x	$\checkmark\checkmark$	$\sqrt{}$	\checkmark	\checkmark	x	\checkmark	
RTM-Worx	\checkmark	$\sqrt{}$	\checkmark	х	$\sqrt{}$	\checkmark	\checkmark	x	x	
RTMsim	\checkmark	x	x	x	\checkmark	\checkmark	\checkmark	x	x	
MyRTM	x	x	x	x	х	x	x	x	x	

Quantitative

- Assessment of Infusion modelling Accuracy vs Computational Cost
- 5 Test Cases Considered
 - 1. UniDirectional (UD) Flat Panel
 - 2. UD Flat Panel + Racetracking
 - 3. Perpendicular Layer Flat Panel
 - 4. Perpendicular Layer Flat Panel + Racetracking
 - 5. Flanged Web Infusion

Quantitative

Divergence

Divergence Values for Different Softwares

Runtime Values for Different Softwares

Future Work

- Continue testing with more geometries
- Continue conversation with ESI and LMAT on developing their software
- Use selected software to develop further research
 - Fine Detail Homogenisation
 - Machine Learning Models
 - Robust Optimisation + SemiActive

Questions?

bristol.ac.uk/composites

References

Literature:

[1] Design and Manufacturing of Aerospace Composite Structures, State-of-the-Art Assessment | Journal of Aircraft. (2025). Journal of Aircraft. <u>https://doi.org/10.2514/ja.2002.39.issue-4;page:string:Article</u>

[2] Wang, J., Andres, & S.G.Advani. (2012). Use of Flow Simulation to Develop Robust Injection and Vent Schemes that Account for Process and Material Variability in Liquid Composite Molding Process. Computer Modeling in Engineering & Sciences, 88(3), 155–182. https://doi.org/10.3970/cmes.2012.088.155

[3] Grössing, H., Stadlmajer, N., Fauster, E., Fleischmann, M., & Schledjewski, R. (2015). Flow front advancement during composite processing: predictions from numerical filling simulation tools in comparison with real-world experiments. Polymer Composites, 37(9), 2782–2793. https://doi.org/10.1002/pc.23474

Images:

[4] Airbus. (2024). A350 Family | Airbus Passenger Aircraft. Www.airbus.com. https://www.airbus.com/en/products-services/commercialaircraft/passenger-aircraft/a350-family

[5] Siemensgamesa.com. (2019). Wind turbines and services - Wind farms / Siemens Gamesa. [online] Available at:

https://www.siemensgamesa.com/global/en/home/products-and-services.html#Offshore-Wind-Turbines-tab-1

[6] The making of the BMW i3. (n.d.). Www.compositesworld.com. https://www.compositesworld.com/articles/the-making-of-the-bmw-i3

[4] XC110 416g 2x2 Twill 6k Prepreg Carbon Fibre 1.25m - Easy Composites. (n.d.). Www.easycomposites.eu

[7] Modeling structural strength. (2020, November 1). Aerospace America. <u>https://aerospaceamerica.aiaa.org/departments/modeling-structural-strength/</u>
[8] high performance composites, bespoke composites, components. (2020, March 4). Pentaxia. https://pentaxia.com/high-performance-composites/
[9] Spirit AeroSystems. (2022, September 22). A220 Wing Factory Tour. YouTube. <u>https://www.youtube.com/watch?v=tDDrgGSiW3A</u>
[10] Wind Turbine Resin Infusion – FLiNK. (2024). Flink.online. https://flink.online/projects/wind-turbine-resin-infusion/

bristol.ac.uk/composites