

Introduction to the EPSRC Future Composites Manufacturing Research Hub

Prof Nick Warrior

Hub Director

University of Nottingham

Overview of Hub, Spokes, structure and organisation

Hub Vision

EPSRC funding, £10.3m

Institutional Commitments, £3.7m

- Develop a national centre of excellence in fundamental research for composites manufacturing
- Deliver research advances in cost reduction and production rate increase, whilst improving quality and sustainability.

Academic Partners – 15 Spokes

CIMComp

HVM Catapult Partners – 4

Industrial Partners – 25 Industrial Supporters - 14

Industrial Supporters

Alexander Dennis Arkema **Expert Tooling & Automation FAR UK Forrest Precision** Heraeus Noblelight

Induction Coil Solutions

KW Special Projects Porcher Solvay QinetiQ **Shape Machining** Surface Generation Toray Advanced Composites

Hub Objectives

Promote a *step change* in composites manufacturing science and technologies

Create a *pipeline of next generation technologies* addressing future industrial needs

Train the next generation of composites manufacturing engineers

Build & grow the *national & international communities* in design & manufacture of high performance composites

Typical Manufacturing Challenges

Precise fibre placement free from winkles

Royal Society Open Science, 2018 https://doi.org/10.1098/rsos.180082

High integrity matrix free from voids

Journal of Composite Materials 2019, Vol. 53(12) 1579–1669

Hub Grand Challenges

Two industry-inspired challenges to underpin the growth potential of the UK Composites sector

- Enhance process robustness via understanding of process science
- Develop high rate processing technologies for high quality structures

Operational Core

- Integrated with EP/L015102/1 EPSRC Centre for Doctoral Training in Composites Manufacture
- Advisory Board provides industrial guidance
- Linked to Composites Leadership Forum

Overview of Hub Research

Hub Research Themes

- Research Themes define broad topics for the Hub programme
- Developed with input from CIMComp Advisory Board and wider community via CIMComp Open Day (Jun 2015 >150 people)
- Reconfirmed in 2019

Hub Research Portfolio 2017-2024

- 29 investigator-led projects funded to date
 - −6 Core Projects
 - **−**19 Feasibility Studies
 - —4 Fellowships
- 35 investigators
- 28 PhD Research Students
- 39 EngD Research Students
- 22 Post Doctoral Research Assistants
 - Aim to fund 37 projects by 2024

Integration Through Work Streams

The Hub Work Streams

WS1: Automated Fibre Deposition Technologies

Aims to rapidly produce components not currently manufacturable using conventional AFP, using a combination of novel prepreg

material formats and new process developments.

CIMComp

Future Composites

Manufacturing Research Hub

Work Stream Impact

Real-time model-based machine control strategies for AFP have been implemented that are currently not achievable on commercial systems.

WS1: ADFP Digital Twin

WS1 ADFP Lab-Scale Rig

WS1: 2D Fibre Steered + 3D Forming

3D mould geometry & Target fibre path

CTS production using HiPerDiF preforms

Unforming simulation (Diaphragm forming)

Diaphragm forming

2D fibre-steered preform design

Straight Prepreg

Continuous tow shearing - CTS process

Steered Prepreg

WS1: Novel tape formats

WS2: Optimisation of Fabric Architectures

Improving through-thickness performance and reduce manufacturing

cost and rate through application of 3D woven and optimised

architectures

CIMComp

Future Composites

Manufacturing Research Hub

Work Stream Impact

Additional 10% weight-saving compared to optimised non-crimp fabrics (NCFs)

WS2: Multi-scale modelling of 3D fibre preforms

- Novel meshing technique TexGen
- Multi-scale modelling to obtain the macro-scale mechanical properties using meso-scale geometries
- Flow modelling for predicting permeability of preforms and minimising void content in composites
- The developed modelling framework and genetic algorithm (GA) are employed for the optimisation of 3D architectures

WS2: 3D multi-axial reinforcements

Multi-axial preform

Demonstrator: car floor pan (from AMRC) **Load cases**: Bending, Torsion

- Conventional orthogonal weaves have poor off-axis properties
- A framework for optimization (UoN) and manufacturing (UoM) of multi-axial preforms

 Optimised 3D multiaxial preforms to give at least an additional 10% weight-saving when compared to optimised ±45° non-crimp fabrics (News

Floor pan geometry

NewRemotoi.-axial.3.D.br

WS2: Braid-winding of tubular preforms

- Braid-winding preforming combines two processes
- The techniques allow creation of multi-axial braided preform with 0°, ±θ and 90° yarn orientations
- Optimisation framework was applied to predict optimum layup
- Several demonstrators of gas cylinders have been manufactured and will be tested

Predictaidswing onoitysevels

WS3: Multifunctional Structures

Multifunctional composite structures have the potential to replace power systems, wiring, actuators, health monitoring systems and control systems, significantly reducing complexity and weight of assemblies.

Work Stream Impact

The Multifunctional Core Project has developed composite materials that exceed the target structural supercapacitor performance: 1.4 Wh/kg & 1.1 W/kg.

CIMComp

Future Composites

Manufacturing Research Hub

WS3: Manufacture and demonstration of curved structural power components

- Collaboration between ICL/UoB led to successful demonstration of masking and barriers to facilitate curved structures
- Developed scale-up for current collection, encapsulation, multicell assembly and demonstration

PLA mask

Polylactic acid (PLA) mask

Multifunctional web and cap

WS4: Online Consolidation

Consolidation and/or cure time is a major bottleneck for fibre

deposition technologies, with slow cure cycles limiting

manufacturing rate.

CIMComp

Future Composites

Work Stream Impact

The Layer By Layer Feasibility Study demonstrated a ~50% saving in cure times for thick components.

WS4: Thick Laminate Digital Twin

Integrated consolidation and cure model

Sub-laminate solution

WS4: Thick Laminate Proof-of-Concept

• Interlaminar properties preserved up to gel for 300 ply laminate $V_f \sim 55\%$

Implementation

Cured laminate

(Degree of cure of previous layer)

CIMComp

Measured laminate temperature centre

Optical micrograph

SEM micrograph

WS5: Liquid Moulding Technologies

LMTs offer great potential but require robust, repeatable

processes with minimal possibility for defects.

Flow in a lab experiment

- Defects (lower permeability)
- Pressure sensors

Detected defects

Permeability

High

Work Stream Impact

Virtual and laboratory testing of Bayesian algorithms has accurately estimated the location and shape of defects, including race tracking.

CIMComp

WS5: Worldwide Benchmarking Activities

22 participants

Through-thickness permeability measurement (all approaches)

30 participants

In-plane permeability, scatter between participants

CIMComp

Future Composites

Manufacturing Research Hub

EPSRC

WS5: Active RTM

- Bayesian inversion algorithm, takes sensor readings as input and predicts position of defects
- Synergy of Engineering and Applied Mathematics
- Predicted position and severity of defects will be used for process control

WS5: Active RTM

- The novel inversion algorithm also works with 3D geometries
- The algorithm can cope with more localised but still important defects (e.g. race-tracking)

Sens Defeate detected that it is a sensible of the sense of the sensible of the sense of the sen

Flow front is faster in this region due to a defect (race tracking)

WS6: Composite Forming Technologies

Composite forming is recognised as an important enabling technology, with significant improvements on manufacturing rate, volume and quality.

Work Stream Impact

The Feasibility Study 'Forming Simulation of curved sandwich panels' developed a numerical tool to optimise net-shape forming for industry.

CIMComp

Future Composites

WS6: Global-to-Local Modelling

Motivation: prediction of small-scale defects using FE analysis impractical with large structures

- Global modelling using membrane-only approach to identify problem areas
- Local modelling using shell-based approach to predict the shape of defects

WS6: Process improvements

Motivation: innovations in processing can improve formability and reduce defects

Pre-form stabilisation

Friction modification

Intra-ply stitch removal

Reference: No removal

Pattern 1

Pattern 2

WS7: Microwave Processing Technologies

Microwave volumetric heating can greatly increase the rate of polymerisation, overcoming undesirable thermal gradients within tooling, reducing cure cycles from hours to minutes and reducing

energy consumption.

Work Stream Impact

The M-Cable project demonstrated a potential for energy savings in excess of 25% using embedded microwave heating in tools.

WS8: Thermoplastic Processing

Thermoplastic composites can be rapidly processed and offer a relatively straight forward route for end of life recycling. This is an area of critical capability in which the UK is lagging behind European

countries.

Work Stream Impact

A Hub Thermoplastics Working Group has been established to coordinate activity in this area and includes the Universities of Nottingham, Warwick, Edinburgh and Cranfield.

CIMComp

Future Composites

Project Start Date

Thank you

Prof Nick Warrior

Hub Director

University of Nottingham

