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Improving the dynamic performance of
launch vehicle structures

Calum Mclnnes, Alberto Pirrera, Byung Chul Kim, Rainer Groh

Structural elements can account for up to 60% of a launch vehicle’s dry mass, hence significant effort is
being undertaken to develop highly mass-efficient structures. Tow-steered composites, those in which
the reinforcement fibres follow curvilinear reference paths, give opportunities for structural tuning. The aim of
this work is to design and optimise tow-steered structures that raise the dynamic performance of laminated
thin-walled cylindrical shells for launch vehicle structures when compared to straight tow baseline designs.

1. Problem Specification 2. Tow-Steered Cylinder Design
o Next-generation launch vehicles require o Tow steering achieved by Continuous Tow Shearing (CTS).
lightweight structures to maximise payload to
orbit. o Single CTS ply denoted as @(T,|T;)". All considered laminates

are balanced and symmetric.

o Tow-steered composites identified as avenue for Periodic Steering of T T,
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3. Structural Analysis Methodology o CTS process gives rise to an orientation-thickness coupling

which can be exploited as pseudo-stiffening features.

o Eigenvalue extraction to calculate natural
frequencies of Ariane 6 interstage demonstrator.

o Laminate stiffness components found by
Classical Laminate Theory.

o Exhaustive search of potential reference paths
with comparisons of frequency and stiffness
results to straight tow designs.

4. Preliminary Results Fig.3. Circumferentially (L) and axially (R) thickness build-ups to give
pseudo-hoops (L) and pseudo-stringers (R).

o Structural deformation at resonance dominated by

circumferential half-waves. 5. Future Work
o Pseudo-hoops are most effective by raising o Detailed design space exploration.
crucial circumferential stiffness component (D,,)
through non-linear stiffness variations. o Formal optimisation studies for single and multiple loading
conditions to maximise dynamic performance without impedin
o Normalised-specific frequency increases of 102% axial load-carrying capacsi;y P P g
and 22% with respect to Quasi-Isotropic and '
optimum straight tow designs respectively. o Manufacture and test optimal structure demonstrator.
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