

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Improving the dynamic performance of launch vehicle structures

Calum McInnes, Alberto Pirrera, Byung Chul Kim, Rainer Groh

Structural elements can account for up to 60% of a launch vehicle's dry mass, hence significant effort is being undertaken to develop highly mass-efficient structures. Tow-steered composites, those in which the reinforcement fibres follow curvilinear reference paths, give opportunities for structural tuning. The aim of this work is to design and optimise tow-steered structures that raise the dynamic performance of laminated thin-walled cylindrical shells for launch vehicle structures when compared to straight tow baseline designs.

0

0

1. Problem Specification

- Next-generation launch vehicles require С lightweight structures to maximise payload to orbit.
- С Tow-steered composites identified as avenue for significant structural performance benefits.
- Resonance represents structural instability and 0 can lead to payload damage or vehicle loss.

Fig.1. Application of Continuous Tow Shearing to **Rocket Shells**

3. Structural Analysis Methodology

- Eigenvalue extraction to calculate natural 0 frequencies of Ariane 6 interstage demonstrator.
- Laminate stiffness components found by 0 Classical Laminate Theory.
- Exhaustive search of potential reference paths 0 with comparisons of frequency and stiffness results to straight tow designs.

4. Preliminary Results

- Structural deformation at resonance dominated by circumferential half-waves.
- Pseudo-hoops are most effective by raising 0 crucial circumferential stiffness component (\overline{D}_{22}) through non-linear stiffness variations.
- Normalised-specific frequency increases of 102% 0 and 22% with respect to Quasi-Isotropic and optimum straight tow designs respectively.

bristol.ac.uk/composites

2. Tow-Steered Cylinder Design

Tow steering achieved by Continuous Tow Shearing (CTS).

Single CTS ply denoted as $\phi(T_0|T_1)^n$. All considered laminates 0 are balanced and symmetric.

CTS process gives rise to an orientation-thickness coupling which can be exploited as pseudo-stiffening features.

Fig.3. Circumferentially (L) and axially (R) thickness build-ups to give pseudo-hoops (L) and pseudo-stringers (R).

5. Future Work

- Detailed design space exploration.
- 0 Formal optimisation studies for single and multiple loading conditions to maximise dynamic performance without impeding axial load-carrying capacity.
- Manufacture and test optimal structure demonstrator. 0

[1] Kim, B. C., Potter, K., and Weaver, P. M., "Continuous tow shearing for manufacturing variable angle tow composites," Composites Part A: Applied Science and Manufacturing, Vol. 43, No. 8, 2012, pp. 1347–1356.

[2] J. Merino, A. Steinacher, M. Windisch, G. Heinrich, R. Forster and C. Bauer, "ARIANE 6 – TANKS & STRUCTURES FOR THE NEW EUROPEAN LAUNCHER," in German Aerospace Conference, Munich, 2017.