

The Clamshell Project

Mr Kirk Willicombe Professor Ian Hamerton Dr Carwyn Ward

BCI Student Showcase

13 April 2021

Kw12738@bristol.ac.uk

bristol.ac.uk/composites

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

The Problem

The Solution: Clamshell

- Rigid exterior shell to protect preform
- New, novel manufacturing process, designed bespoke from start to finish for the high-volume, automotive industry
 - Dry fibre placed into rigid lower shell
 - Top shell closed on top, sealed, so preform held to shape
 - Preform transported to final press station
 - Heated press melts shell and compresses through the fibre, impregnating the material
- Thus, the external shell has:
 - Shaped the preform
 - Protected the preform during transportation
 - Become the matrix for the final part

Benefits

- Targeting the rate issues that prevent composite adoption in automotive
 - Removes binder large time-cost for current process (~50%)
 - Lowers cost by removing high-pressure injection
 - Gives pathway to £/kg and takt time targets
 - Disruptive technology to revolutionise preforming for highvolume applications
- Sustainability addressed
 - Perfect for recycled fibres, which are normally difficult to hold in shape
 - Reformable shell materials likely mean a matrix that's easier to recycle
- Transportation shells
 - Cost saving due to vacuum lines being able to be shut off

Evaluation of the time cost of each stage of the fabrication of a simple automotive part manufactured utilising HP RTM

Current Work – Forming and Transport

• 3D shell prototypes vacuum formed to shape

- Transportation with robotic pick-and-place systems
 - Reduced geometric deformation
 - Fewer defects imparted during the transportation process
 - Expensive/complex needle grippers not required

13/04/2021

Current Work - Compaction/Infusion

- Heated Compaction Trials:
 - PLA and 6-ply UD carbon
 - Good impregnation possible
 - Process refinement required

Current and Future Work

- Custom experimental rig
 - Expanded range of testing capabilities
 - Previous results replicated on larger scale
 - Better replication of industrial processes

- Further process refinement
- Expansion of concept utility
 - Recycled fibre preforms
 - Multi-element parts

kw12738@bristol.ac.uk

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science