

Advanced continuous tow shearing process

BCI Showcase

Michelle Rautmann

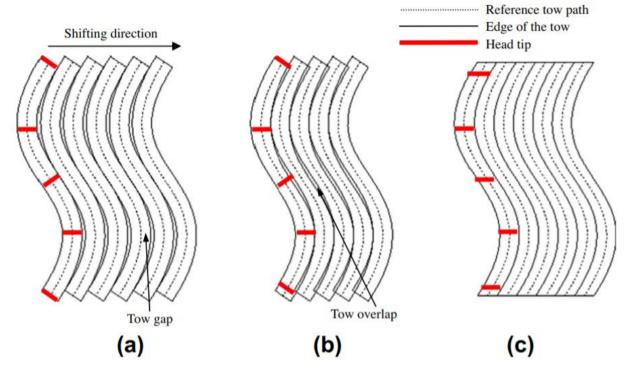
Supervisors: Dr. Byung Chul Eric Kim

Dr. Dmitry Ivanov

13th of April 2021

bristol.ac.uk/composites

Continuous tow shearing process


Continuous Tow Shearing (CTS) process allows defect free fibre steering for 1D angle variation composite layups

- Eliminates tow gaps or overlaps
- No coupling between the tape width and the minimum steering radius.

Challenges

 Laying up on a complex 3D surface is to date challenging, as triangular gaps with fibre discontinuities and resin rich areas are induced

Defect-free 3D fibre steering
Significantly expand the design space
Achieve ultrahigh structural efficiency

(a) Tow gaps induced by conventional AFP, (b) tow overlaps induced by conventional AFP, (c) CTS layup [1]

[1] B.C. Kim et al. / Composites: Part A 43 (2012) 1347–1356

Advanced continuous tow shearing process utilising tow width control

Research aim and objectives

Aim:

Improving the current Continuous Tow Shearing (CTS) technology by utilising tow width control (TWiC)

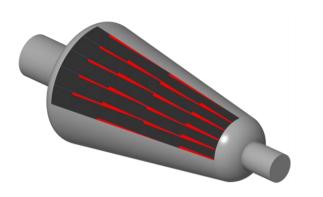
• Eliminating free tow edges and resin rich areas that result in high stress concentration without inducing tow drops or overlaps, and maintaining a constant fibre volume fraction

Objectives:

- Study the current CTS concept
- Find ideas to eliminate geometry induced defects
- Design and build a TWiC device head that can be easily mounted on current CNC machines or robots
- Produce 2-Dimensional and 3-Dimensional layups
- Evaluate and analyse the accuracy of the layup
- Improve the concept

Conventional layup defects

Geometry induced defects:


Resin rich areas and fibre discontinuities

High stress concentration

Areas of failure initiation

AFP layup with resin pockets

TWiC concept

'Defect-free' TWiC layup

[2] https://www.youtube.com/watch?v=xK4gMDduHgA

AFP process [2]

Advanced continuous tow shearing process utilising tow width control

Michelle Rautmann 13th of April 2021

Effect of defects

Specimen Analytical Experimental configurations result (MPa) result (MPa)

Un-notched test:

Baseline 357.5
Defect induced 312.5 12.59 303.1 22.12

Open hole test:

225.6

Table 2: Comparison of tensile test results between defect free specimens, and un-notched and notched specimens containing resin rich areas. [3]

Strength reduction in %

Baseline 219.2 Defect induced 199.2 9.12 Tow-Drop gap defects (resin-rich zones) (51°|39°), (51°|39°) Out-of-plane waviness (Contact surfaces between plies) Perspective view

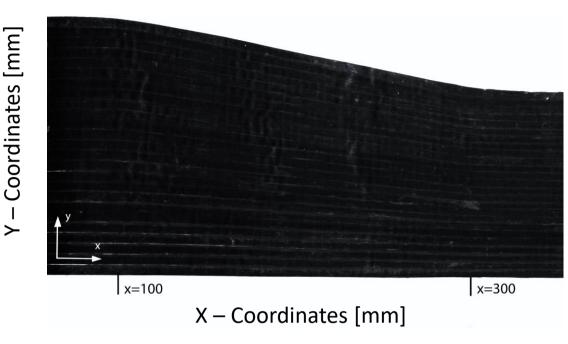
214.7 4.83 Tows (III) 6.35 (II) 51° 90 06 90° -45° 0° +45° (51°|39°)₂ v=0, u=0(-45°), 32

[3] Test specimens with induced tow drops, resulting in triangular shaped resin rich areas for un-notched and notched tensile tests by Falco et al. .

X-ray computed tomography of specimens. [3]

Specimen geometry and boundary conditions. All dimensions in mm. [3]

Advanced continuous tow shearing process utilising tow width control


Michelle Rautmann 13th of April 2021

- Change the tow width by approximately 30% (to be improved)
- Produce complex shaped 3-dimensional structures without tow gaps and overlaps
- Eliminate fibre discontinuities and resin rich areas (hot spots for damage initiation)
- Produce less defects than material deposition processes used to date

Defect-free 3D fibre steering

Significantly expand the design space Achieve ultrahigh structural efficiency

>

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Thank you

michelle.rautmann@bristol.ac.uk

Advanced continuous tow shearing process

Michelle Rautmann 13th of April 2021