

Hernaldo Mendoza Nava

Rainer Groh & Alberto Pirrera - *Bristol Composites Institute* Marc Holderied - *School of Biological Sciences*

BCI Postgraduate Research and Training Showcase - April 13th, 2021

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Bioinspired Engineering

Venus fly trap — Snap-buckling instability for prey capture

Forterre, Y. (2005) Nature 433:421–425

Stoychev, G. (2011) Soft Matter 7. 3277

Morphing Devices

Deployable

Structures

Guo, Q. (2015) J. R. Soc. Interface 12: 20150598

Programmable Composites

Schmied, J.U. (2017) Bioinspir. Biomim. 12:026012

for Innovation and Science

Acoustic Spectrogram — Ultrasonic clicks

Apple ermine moth

Y. malinellus / Slowed 62.5x O'Reilly, L.J. (2019)

O'Reilly, L.J. (2019) Sci. Rep. 9:1444

Bioinspired engineering — sound production through elastic instabilities
Hernaldo Mendoza Nava

Aeroelastic Tymbal

"Window" — smooth doubly curved membrane

Sound from bat detector

Bioinspired engineering — sound production through elastic instabilities
Hernaldo Mendoza Nava

Aeroelastic Tymbal

Sound from bat detector

Bioinspired Model — Single Stria

Continuity conditions: G^3 continuity (k = 3)

$$\frac{d^k \mathbf{r}^a(1)}{dt^k} = \frac{d^k \mathbf{r}^b(0)}{dt^k}$$

$$K = \frac{LN - M^2}{EG - F^2}$$

E, F, G,: First fundamental form coefficients (metric)

L, M, N,: Second fundamental form coefficients (curvature)

Nonlinear Analysis

The structure shows a global and local unstable behaviour under **displacement control**.

Under force control the system would buckle globally.

Nonlinear Analysis

Resembling Global Buckling

The structure shows a global and local unstable behaviour under **displacement control**.

Under force control the system would buckle globally.

Bioinspired engineering — sound production through elastic instabilities
Hernaldo Mendoza Nava

Bioinspired Model — Multi-striae

Tymbal Resonance — Laser Doppler Vibrometry

Bioinspired Model — Multi-striae

Gaussian Curvature, K

Exterior Surface — ACIN3D3 (infinite acoustic elements)

Interior volume — AC3D4 (finite acoustic solid elements)

Structural-Acoustic Coupling

Steady-state harmonic analysis

Structural-Acoustic Coupling

Summary

Dynamic snap-buckling is likely the mechanism of sound production found in aeroelastic tymbals.

Our bioinspired model supports the hypothesis that elastic instabilities at the interface trigger the sound production, while the vibrating window membrane serves as the main acoustic source.

Multi-functional non-linear biological structures

Acknowledgements

Financial support by the Science and Technology National Council (CONACYT - Mexico, CVU/Studentship No. 530777/472285) is gratefully acknowledged. This project is supported by the Engineering and Physical Sciences Research Council (EPSRC) through the ACCIS Doctoral Training Centre [grant number EP/G036772/1].

This work was carried out using the computational facilities of the **Advanced Computing Research Centre**, University of Bristol (http://www.bristol.ac.uk/acrc/).

Hernaldo Mendoza Nava hm17547@bristol.ac.uk

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

