Dynamic Tuning of Thin-Walled Cylinders by Continuous Tow Shearing Calum McInnes, Alberto Pirrera, Byung Chul Kim, Rainer Groh Bristol Composites Institute Postgraduate Research and Training Showcase 13th April 2021 EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing [1] ### **Continuous Tow Sheared Cylinders** - Lightweight structures are identified as **key enabling technology** in next-generation aerospace vehicle design - Continuous Tow Shearing (CTS) exhibits orientation-thickness coupling of steered material tows - Periodic directional steering allows embedded pseudo-stiffeners Reference **Path** ### **Improved Structural Efficiency** - Cylinders simulated under free-free boundary conditions in Abaqus CAE - Radially dominated deformations at resonance - Infer structural preference to axial steering - 40% increase in performance ## Questions at poster calum.mcinnes@bristol.ac.uk #### References [1] B. C. Kim, K. Potter and P. M. Weaver, "Continuous tow shearing for manufacturing variable angle tow composites," Composites: Part A, vol. 43, pp. 1347-1356, 2012. EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing