

Dynamic Tuning of Thin-Walled Cylinders by Continuous Tow Shearing

Calum McInnes, Alberto Pirrera, Byung Chul Kim, Rainer Groh

Bristol Composites Institute Postgraduate Research and Training Showcase

13th April 2021

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

[1]

Continuous Tow Sheared Cylinders

- Lightweight structures are identified as **key enabling technology** in next-generation aerospace vehicle design
- Continuous Tow Shearing (CTS) exhibits orientation-thickness coupling of steered material tows
- Periodic directional steering allows embedded pseudo-stiffeners

Reference

Path

Improved Structural Efficiency

- Cylinders simulated under free-free boundary conditions in Abaqus CAE
- Radially dominated deformations at resonance
- Infer structural preference to axial steering
- 40% increase in performance

Questions at poster calum.mcinnes@bristol.ac.uk

References

[1] B. C. Kim, K. Potter and P. M. Weaver, "Continuous tow shearing for manufacturing variable angle tow composites," Composites: Part A, vol. 43, pp. 1347-1356, 2012.

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing