Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections **Reece Lincoln** (presenting author), Prof. Paul Weaver, Dr Alberto Pirrera, Dr Rainer Groh Bristol Composites Institute Postgraduate Research and Training Showcase 13th April 2021 EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science #### Contents - Context - Cylinders and tow shearing - Nomenclature - Optimisation - Results - Conclusions and future work for Innovation and Science ## Context – Cylinders and tow shearing Due to sensitivity to geometric imperfections [2] $$KDF = \frac{P^{ex}}{P^{th}}$$ - Steer fibres to tailor load paths - Reduced imperfection sensitivity due to symmetry-breaking effect of anisotropic stiffness [3] [4] ^[2] Koiter, Tech. rep., NASA TT-F-10833, 1967 ^[3] Lincoln, Compos. Struct. 2019 ^[4] tinyurl.com/CTSLincolnApril2021 ## Context – Continuous Tow Shearing (CTS) - Automated Fibre Placement (AFP) derived mechanism to place curvilinear tow paths [5] - Shears tows instead of in-plane bending of tows - Eliminates fibre buckling, fibre straightening, ply gaps, ply overlaps, has a smaller steering radii and perfect tessellation - Additional design feature is a fibre-angle thickness coupling - Shearing by an angle θ results in a thickness build-up $$t = t_0/\cos(\theta)$$ Reece Lincoln #### Context – Nomenclature Adaptation of Gürdal and Olmedo [6] $$\left(\phi\langle T_0|T_1\rangle^n\right)$$ - Where: - $\phi = [0, 90]$ - $n = [0, 1, ..., 10]_{\phi=0}$ = $[0, 1, ..., 18]_{\phi=90}$ - $T_0 = [0, 5, ..., 70]$ - $T_1 = [0, 5, ..., 70]$ ### Optimisation - Realistic imperfection signatures [7], 'reliabilitybased genetic algorithm' (GA) - First-Order Second-Moment (FOSM) methodology [7] implemented into GA - Maximize $\tilde{P}_{\mathrm{imp}}^{\mathrm{FOSM}}$ ($\tilde{P}_{\mathrm{imp}}^{\mathrm{FOSM}} = \tilde{P}_{\mathrm{imp}}^{\mu} b \cdot \tilde{P}_{\mathrm{imp}}^{\sigma}$) - $ilde{P}^{\mu}_{ ext{imp}}$ is the specific, imperfect buckling of the mean imperfection signature - **b** is a reliability factor (assuming normal distribution and 99.9% of cases) - $ilde{P}_{ m imp}^{\sigma}$ is the standard deviation of buckling loads across the imperfection data set #### Results • GA-optimum has higher $ilde{P}_{ m imp}^{ m FOSM}$ than QI | Layup | $ ilde{P}_{ m imp}^{ m FOSM}$ [kN / kg] | $ ilde{P}^{\mu}_{ m imp}$ [kN / kg] | $ ilde{P}^{\sigma}_{ m imp}$ [kN / kg] | $\operatorname{var}(ilde{P}_{\operatorname{imp}})$ | KDF | |--|---|-------------------------------------|--|---|-------| | $[\pm 45, 0, 90]_{s}$ | 9.22 | 49.7 | 13.1 | 171 | 0.152 | | $[\pm 90\langle 65 60\rangle^2, 0\langle 0 20\rangle^9]_s$ | 36.9 | 55.1 | 5.88 | 34.6 | 0.574 | | Δ% | +120 | +10.3 | -76.1 | -133 | +166 | • 'Reliability-based' KDF calculated from $$KDF = \frac{\tilde{P}_{imp}^{FOSM}}{\tilde{P}_{perf}}$$ for Innovation and Science #### Conclusions and future work - Novel probabilistic 'imperfect-geometry' optimisation - Realistic data bank of imperfections of composite cylinders - Reliability has been increased through an increase in mean buckling load and decrease in std. and var reece.lincoln@bristol.ac.uk **Poster:** Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science