

Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections

Reece Lincoln (presenting author), Prof. Paul Weaver, Dr Alberto Pirrera, Dr Rainer Groh

Bristol Composites Institute Postgraduate Research and Training Showcase

13th April 2021

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Contents

- Context
 - Cylinders and tow shearing
 - Nomenclature
- Optimisation
- Results
- Conclusions and future work

for Innovation and Science

Context – Cylinders and tow shearing

 Due to sensitivity to geometric imperfections [2]

$$KDF = \frac{P^{ex}}{P^{th}}$$

- Steer fibres to tailor load paths
 - Reduced imperfection sensitivity due to symmetry-breaking effect of anisotropic stiffness [3]

[4]

^[2] Koiter, Tech. rep., NASA TT-F-10833, 1967

^[3] Lincoln, Compos. Struct. 2019

^[4] tinyurl.com/CTSLincolnApril2021

Context – Continuous Tow Shearing (CTS)

- Automated Fibre Placement (AFP) derived mechanism to place curvilinear tow paths
 [5]
 - Shears tows instead of in-plane bending of tows
 - Eliminates fibre buckling, fibre straightening, ply gaps, ply overlaps, has a smaller steering radii and perfect tessellation
- Additional design feature is a fibre-angle thickness coupling
 - Shearing by an angle θ results in a thickness build-up

$$t = t_0/\cos(\theta)$$

Reece Lincoln

Context – Nomenclature

Adaptation of Gürdal and Olmedo [6]

$$\left(\phi\langle T_0|T_1\rangle^n\right)$$

- Where:
 - $\phi = [0, 90]$
 - $n = [0, 1, ..., 10]_{\phi=0}$ = $[0, 1, ..., 18]_{\phi=90}$
 - $T_0 = [0, 5, ..., 70]$
 - $T_1 = [0, 5, ..., 70]$

Optimisation

- Realistic imperfection signatures [7], 'reliabilitybased genetic algorithm' (GA)
- First-Order Second-Moment (FOSM) methodology
 [7] implemented into GA
- Maximize $\tilde{P}_{\mathrm{imp}}^{\mathrm{FOSM}}$ ($\tilde{P}_{\mathrm{imp}}^{\mathrm{FOSM}} = \tilde{P}_{\mathrm{imp}}^{\mu} b \cdot \tilde{P}_{\mathrm{imp}}^{\sigma}$)
 - $ilde{P}^{\mu}_{ ext{imp}}$ is the specific, imperfect buckling of the mean imperfection signature
 - **b** is a reliability factor (assuming normal distribution and 99.9% of cases)
 - $ilde{P}_{
 m imp}^{\sigma}$ is the standard deviation of buckling loads across the imperfection data set

Results

• GA-optimum has higher $ilde{P}_{
m imp}^{
m FOSM}$ than QI

Layup	$ ilde{P}_{ m imp}^{ m FOSM}$ [kN / kg]	$ ilde{P}^{\mu}_{ m imp}$ [kN / kg]	$ ilde{P}^{\sigma}_{ m imp}$ [kN / kg]	$\operatorname{var}(ilde{P}_{\operatorname{imp}})$	KDF
$[\pm 45, 0, 90]_{s}$	9.22	49.7	13.1	171	0.152
$[\pm 90\langle 65 60\rangle^2, 0\langle 0 20\rangle^9]_s$	36.9	55.1	5.88	34.6	0.574
Δ%	+120	+10.3	-76.1	-133	+166

• 'Reliability-based' KDF calculated from

$$KDF = \frac{\tilde{P}_{imp}^{FOSM}}{\tilde{P}_{perf}}$$

for Innovation and Science

Conclusions and future work

- Novel probabilistic 'imperfect-geometry' optimisation
- Realistic data bank of imperfections of composite cylinders
- Reliability has been increased through an increase in mean buckling load and decrease in std. and var

reece.lincoln@bristol.ac.uk

Poster: Optimisation of variable-stiffness cylinders under axial compression with realistic imperfections

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

