

Aligned Discontinuous Natural Fibre Epoxy Composites Produced with the HiPerDiF Method

Ali Kandemir

Advisors:

Dr. Marco Longana

Prof. Ian Hamerton

Prof. Steve Eichhorn

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

Aim of Project

□ to demonstrate the **capability** of **HiPerDiF** to contribute to the **sustainability** of composite materials.

Fibre

Glass fibres

Polymer (Matrix)

Epoxy resin

X renewable

X easy to recycle

X low environmental impact

X biodegradable

X sustainable

 Selection of sustainable reinforcement materials that is compatible for the HiPerDiF method Selection of sustainable matrix materials that is compatible for the HiPerDiF method

HiPerDiF is a water-based process has a potential to produce high performance structures by using eco-friendly, low impact, green, and renewables constituents. The main alignment mechanism is a sudden momentum change of fibre-water suspension.

Article

Characterisation of Natural Fibres for Sustainable Discontinuous Fibre Composite Materials

Ali Kandemir *D, Thomas R. Pozegic, Ian Hamerton, Stephen J. Eichhorn and Marco L. Longana

Curaua

Jute

Flax

- In previous study, the microbond tests were performed to obtain the critical lengths of NF that are important for defining the mechanical performances of discontinuous and short fibre composites.
- The obtained data determined the cut length of fibres and aligned discontinuous NF preforms were produced by the HiPerDiF method.
- The preforms were impregnated with epoxy resin film to form a prepreg ply and 4 plies were laid up to form NF epoxy composites.

$$IFSS$$
(MPa) $=rac{F_d(N)}{A_e(mm^2)} \qquad \qquad rac{l_c}{d} = rac{\sigma_f}{2 imes IFSS}$

A schematic setup of the microbond test.

Table 1: Constituent Properties. (No data sheets were given by the providers and flax-cu fibres were too short to perform any mechanical or interfacial tests.)

Constutient	Density (g cm ⁻³)	Elastic Modulus (GPa)	Tensile Strength (MPa)	Critical Length (mm)
Fibres				
curaua	1.50	39	660	2.22
flax-ft (French origin)	1.54	52	580	1.56
flax-cu (Poland origin)	1.40	-	-	-
jute	1.51	27	300	0.84

curaua flax-cu flax-ft jute

Top view of aligned discontinuous NF

preforms processed by the HiPerDiF method

before matrix impregnation.

Top view of aligned discontinuous NF epoxy composites.

Representative stress-strain curves of aligned discontinuous NF epoxy composites.

The mechanical properties of aligned discontinuous NF epoxy composites.

- flax-ft-6mm is the stiffest (~32 GPa) among all fibre types.
- curaua-6mm is the strongest (~205 MPa), the 2nd strongest is flax-ft-6mm (~200 MPa).
- Among the studied fibres, flax fibres were found to be the most promising candidate owing to their mechanical performance in the composites and current market status for sustainability.

Thank You for Your Attention

KEEP CALM WASH YOUR HANDS

AND

STAY ALERT

ali.kandemir@bristol.ac.uk

Special thanks for Ian Chorley, Allison McIntosh-Smith, James Thatcher, Steve Rae, and Yusuf Mahadik from Bristol Composites Institute Laboratory Technical Support & Development Team for their constructive help and assistance especially during the Covid-19 pandemic.

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

