

The Effects of Interleaf Architecture on Composite Toughness

Robin Hartley

Academic supervisors:

Ian Hamerton, Ivana Partridge, James Kratz Industrial supervisors:

David Tilbrook, Alex Baidak

Background

Impact performance

- Limited by interlaminar toughness
- Toughen by interleaving
- Interleaves readily formed with particles

How does changing interleaf architecture affect interlaminar toughness?

Image: Bull et al. 2013

Motivation

for Innovation and Science

Background

Aims

Role of:

- Interleaf thickness
- Particle material (rigid vs soft)
- Particle loading
- Mode I vs mixed mode loading

- Toughness
- Toughening mechanisms
- Crack path

Approach

Constituents

- High T_g epoxy
- Thermoplastic toughened
- Micro particles:

Polymer toughness

Polymer SENB testing:

• SEM fractography:

Composite toughness

DCB/MMB Testing

 Crack path and fracture surface analysis

for Innovation and Science

Results

Composite G_{IC} vs Interleaf Thickness

Robin Hartley

rh16880@bristol.ac.uk

EPSRC Centre for Doctoral Training in Advanced Composites for Innovation and Science

With thanks to support from:

