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Abstract. We analyze a model of di�usion on social networks. Agents are

connected according to an undirected graph (the network) and choose one of two actions

(e.g., either to adopt a new behavior or technology or not to adopt it). The return to

each of the actions depends on how many neighbors an agent has, which actions the

agent's neighbors choose, and some agent-speci�c cost and bene�t parameters. At the

outset, a small portion of the population is randomly selected to adopt the behavior.

We analyze whether the behavior spreads to a larger portion of the population. We

show that there is a threshold where \tipping" occurs: if a large enough initial group is

selected then the behavior grows and spreads to a signi�cant portion of the population,

while otherwise the behavior collapses so that no one in the population chooses to

adopt the behavior. We characterize the tipping threshold and the eventual portion

that adopts if the threshold is surpassed. We also show how the threshold and adoption

rate depend on the network structure. Applications of the techniques introduced in

this paper include marketing, epidemiology, technological transfers, and information

transmission, among others.
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1. Introduction

An individual's decision to adopt a new behavior often depends on the distribution of similar

choices the individual observes among her peers, be they friends, colleagues, or acquaintances.

This may be driven by underlying network externalities, as in a decision to use a new

technology such as a new operating system or a new language, where the bene�ts of the new

technology are larger when more of an agent's acquaintances have adopted the technology.

It may also be an artifact of simple learning processes, where the chance that an individual

learns about a new behavior or its bene�ts is increasing in the number of neighbors who

have adopted the behavior. For instance, decisions regarding whether to go to a particular

movie or restaurant, or whether to buy a new product, provide examples of situations in

which information learned through friends and their behavior are important. Of course,

there are many other potential channels by which peer decisions may have signi�cant impact

on individual behavior. The starting point of our analysis is the observation that in all such

environments, the extent to which a new behavior spreads throughout a society depends not

only on its relative attractiveness or payo�, but also on the underlying social structure.

In this paper, we analyze how social structure inuences the spread of a new behavior

or technology. We consider a binary choice model with two actions: A and B: We prescribe

action A to be the status quo. Agents adopt the new behavior B only if it appears worthwhile

for them to do so. This depends on the costs and bene�ts of the action, and how many of

an agent's neighbors have adopted behavior B. The cost and bene�ts of adopting the action

B di�er randomly across agents.

The novelty of the model arises from the speci�cation of the social interactions that each

agent experiences. Here we work with a stylized model of a social network. Each agent

has some number of neighbors. These are the people that (directly) inuence the agent's

decision. Di�erent agents in the society may have di�erent numbers of neighbors. This

number of neighbors is termed the agent's degree. The game is therefore described by two

distributions: one corresponding to the bene�ts of the behavior B and one corresponding to
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number of neighbors that each agent has.

At the outset of the process, a fraction x0 of agents is randomly assigned the action B

while all other players use the action A: For instance, this could metaphorically be thought

of as a free trial period of the new technology. At each period, each agent myopically best

responds to her neighbors' previous period's actions. The goal of the paper is to characterize

the evolving dynamics and its dependence on the underlying network structure.

There are three main insights that come out of our inquiry. First, we show the existence

of a smallest x0 that is su�cient for such dynamics to lead to an increase in the number

of B adopters over time. That is, we identify a tipping point beyond which the action B

becomes more prominent, i.e., di�uses in the population. Second, for a class of cost-bene�t

distributions of the action B we can describe the shape of the di�usion processes. The

uniform distribution serves as a good example. In that case, the speed of increase in the

number of B adopters increases up to a certain point in time at which the speed begins to

consistently decrease. Third, we show how the di�usion of behavior changes as we change

the structure of social interaction. That is, we perform comparative statics pertaining to

the tipping point as well as the ultimate convergence point of the di�usion dynamics, with

respect to the network structure. We examine two sorts of changes to the structure of social

interaction, one where agents are given more neighbors (in the sense of �rst order stochastic

dominance of the degree distribution) and a second where the heterogeneity of degrees, or

connectedness, in the population increases (in the sense of second order stochastic dominance

of the degree distribution).

Our results can be taken as a metaphor for many applied problems. In marketing,

the results provide a step toward understanding when the adoption of a new technology or

product by only few consumers leads to a fad, as a function of the underlying social structure

(for several popular examples, see Gladwell (2000)). In criminology, the results advance the

theoretical foundations for understanding how crime spreads or vanishes (Glaeser, Sacerdote

and Scheinkman (1996) show the importance of social structures for criminal behavior). In

�nancial markets, the results may be useful in understanding the evolution of \partial" bank
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runs and other sorts of herd behavior.

There have been several modeling endeavors pertaining to di�usion processes related to

the one developed here. The �rst prominent strand of literature that relates to our analysis

comes from the �eld of epidemiology (e.g., see Bailey (1975)). The type of question that arises

in that literature regards the spread of disease among individuals connected by a network,

with some recent attention to power-law (aka scale-free) degree distributions (e.g., Pastor-

Satorras and Vespignani (2000, 2001), May and Lloyd (2001), and Dezso and Barbasi (2002)),

but also some analysis pertaining to other classes of degree distributions (e.g., Lopez-Pintado

(2004), Jackson and Rogers (2004)). The second, and related, strand of research comes from

the computer science literature regarding the spread of computer viruses (see, for instance,

the empirical observations in Newman, Forrest, and Balthrop (2002)).1 The model from these

two strands closest to ours is the so called Susceptible, Infected, Recovered (SIR) model. In

that model, susceptible agents can catch a disease from infected neighbors and, once infected,

eventually either recover or are removed from the system and no longer infect others. There

are several studies examining the spread of such diseases as it relates to network structure

(e.g., Newman (2002)). These di�er from our model, approach, and results in three notable

ways. First, in our model agents make strategic choices about behavior in contrast to being

randomly assigned an attribute (such as being infected). These choices depend on relative

costs and bene�ts to behavior as well as on the proportion of neighbors choosing di�erent

behaviors. This di�ers in structure from independent infection probabilities across links that

is assumed in the epidemiology literature (although it permits it as a special case). It also

leads to stark di�erences in propagation dynamics. Indeed, in the epidemiology literature it

is enough to have a single infected neighbor for one to catch a disease, whereas our setup

allows for a change in behavior to depend on the fraction of neighbors (for example, making

adoption of a new behavior optimal if and only if the percentage of neighbors who have

already done so surpasses a certain threshold). Second, the tipping point that we identify

1There is also a rich literature of case studies of the di�usion of various sorts of information and behavior,
such as the classic study by Coleman, Katz, and Menzel (1966) on the adoption of tetracycline.
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relates to the percentage of the population that needs to be seeded as initial adopters in

order to have the new behavior persist. This di�ers from the thresholds usually investigated

in the epidemiology literature, where it is the probability of transmission that must pass

a threshold. This di�erence is a natural consequence of the type of questions explored

in the epidemiology literature. Indeed, in the context of epidemics, a single individual is

often the �rst source of a disease and can generate an epidemic depending on (exogenous)

infection probabilities.2 In contrast, with behavior there can be some nontrivial portion

of the population that are initial adopters (independent of neighbors' behavior), such as

those who gain utility from experimenting with new behaviors or products, or those exposed

to a trial run or free sample. Furthermore, probabilities of adoption may depend on the

distribution of adopters at each point in time. Thus, the focus of our analysis is on the

volume of initial adopters (that endogenously generate transmission probabilities). Third,

using techniques derived from Jackson and Rogers (2004) based on stochastic dominance

arguments, we are able to make comparisons across general network structures, whereas the

previous literature has had to resort either to simulations or speci�c degree distributions in

order to make comparisons.

In the economics literature, Young (2000) approaches a similar set of questions to ours

with a di�erent modeling setup. In Young's analysis, neighbors' e�ects on an agent's utility

are separable. Young studies a process reminiscent of the one used here in which at each

point in time, agents update with a logistic distribution that is a function of payo� di�erences

arising from the di�erent actions played against current play (rather than a simple best

response). Young's main result shows that for su�ciently dense networks, there is an upper

bound on the time span it takes the entire population to switch actions with arbitrarily high

probability. There is also a literature that examines the equilibrium outcomes of a variety of

games played on networks (e.g., Chwe (2000), Morris (2000) and Galeotti, Goyal, Jackson,

Vega, and Yariv (2005)). Those analyses have a di�erent structure as to how neighbors'

2A classical example is that of AIDS, in which one person, \patient O", has been identi�ed as the trigger
to the spread of the disease in the westernized world - see Auerbach, Darrow, Ja�e, and Curran (1984).



Diffusion on Social Networks 5

actions matter. In addition, they focus on the overall equilibrium structure rather than the

tipping point and di�usion of behavior that we analyze here.

The paper is structured as follows. Section 2 contains the description of the model and

the results. We �rst present results characterizing the di�usion dynamics. We then present

some comparative statics of the analyzed dynamics. Section 3 concludes.

2. Diffusion Dynamics and \Tipping"

2.1. The Model. We consider a society of individuals who each start out taking an

action A. The possibility arises of switching to a new action B (a metaphor for a new

technology, for example).

We consider a countable set of agents and capture the social structure by its underlying

network. The way in which we model the network is through the distribution of the number

of direct neighbors, or degree, that each agent has. Agent i's degree is denoted di: The

fraction of agents in the population with d neighbors is given by P (d) > 0; for d = 1; ::::; D;
and

XD

d=1
P (d) = 1:

Behavior A is the default behavior (for example, the status-quo technology) and its payo�

to an agent is normalized to 0. An agent i has a cost of choosing B, denoted ci > 0. An

agent also has some bene�t from B, denoted vi � 0. These are randomly and independently

distributed across the society, according to a distribution that we specify shortly. Agent i's

payo� from adopting behavior B when i has di neighbors is:

vig(di)�i � ci

where and �i is the fraction of i's neighbors who have chosen B and g(di) is a function

capturing how the number of neighbors that i has a�ects the bene�ts to i from adopting B.

So, i will switch to B if the corresponding cost-bene�t analysis is favorable, that is, if

vi
ci
g(di)�i � 1: (1)
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Thus, the primitives of the model are the distribution of di's in the population (P ), the

speci�cation of g, and the distribution of vi=ci. Let F be the cumulative distribution function

of vi=ci. For ease of exposition we assume that F is twice di�erentiable and has a density f:

To get some feeling for behavior as a function of the number of neighbors that an agent

has, let us examine a case where g(d) = �d�. If � > 0, then agents with higher degrees

(i.e., more neighbors) are more likely to adopt the new technology or behavior for any given

fraction of neighbors who have adopted �i, while if � < 0, then agents with higher degrees

are less likely to adopt the new technology or behavior. The case where � > 0 is one where

bene�ts depend not only on the fraction, but also on the number of an agent's neighbors

who have adopted the behavior. For instance, if � = 1, then g(di)�i is simply proportional

to the number of neighbors that an agent has who have adopted the behavior (which is a

standard case in the epidemiology literature, where infection rates are proportional to the

number of contacts with infected individuals). If � = 0, then an agent cares only about

the fraction of neighbors who have adopted the action B and not on their absolute number

(which is a standard case studied in coordination games, where players are often thought of

to be randomly matched with a neighbor to play a game). In that case, an agent's degree

plays less of a role than in cases where � 6= 0.

At t = 0; a fraction x0 of the population is exogenously and randomly switched to the

action B. At each stage t > 0; each agent, including the fraction of x0 agents who are

assigned the action B at the outset, best responds to the distribution of agents choosing the

action B in period t� 1:

As we shall show below, convergence of behavior from the starting point is monotone,

either upwards or downwards. So, once an agent (voluntarily) switches behaviors, the agent

will not want to switch back at a later date. Thus, although these best responses are

myopic, any changes in behavior are equivalently forward-looking. The eventual rest point

of the system is an equilibrium of the system.
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2.2. Di�usion. Let xtd denote the fraction of those agents with degree d who have

adopted the behavior B by time t, and let xt denote the link-weighted fraction of agents

who have adopted by time t. That is,

xt =
X
d

xtddP (d)
�d

;

where �d is the average degree under P . The reason for weighting by links is standard: dP (d)�d is

the probability that any given neighbor of some agent is of degree d (under the presumption

that there is no correlation in degrees of linked agents).

We analyze a simple dynamic that leads to an overall equilibrium of the system. We

begin with some random perturbation where x0d of the agents of degree d have adopted.

Given this, we then check each agent's best response to the system. This leads to a new x1d

for each d. Iterating on this process, we show that the system will eventually converge to a

steady state. The convergence point is an equilibrium in the sense that given the state of

the system, no additional agents wish to adopt, and none of the agents who have adopted

would like to change their minds.

Given the complexity of the system, we use a standard technique for estimating the so-

lutions. Namely, we use a mean-�eld analysis to estimate the proportion of the population

that will have adopted at each time. This is described as follows. We start with the as-

sumption that each i has the same initial fraction of neighbors adopting B, x0 (and ignore

the constraint that this be an integer). We also ignore the random distribution of initial

adopters throughout the population. Each agent is matched with the actual distribution of

the population.3

So, i will adopt B in the �rst period if vi=ci > 1=(g(d)x
0). Based on this, the fraction of

3Another way to think about this approximation is as follows. Contemplate a two stage process such that
at the �rst stage, each agent has a probability of x0 of being assigned the new behavior B, and at the second
stage, each agent is randomly matched to neighbors according to P (d): The expected fraction of neighbors
of each individual choosing B is then x0; and our approximation assumes that agents place a probability of
1 on the mean.
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degree d types who will adopt B in the �rst period is

x1d = 1� F [1=(g(d)x0)]:

We now have a new probability that a given link points to an adopter, which is x1 =P
d dP (d)x

1
d=
�d. Iterating on this, at time t we get xtd = 1 � F [1=(g(d)xt�1)]. This gives us

an equation:

xt =
1
�d

X
d

dP (d)
�
1� F [1=(g(d)xt�1)]

�
;

or

xt = 1� 1�d
X
d

dP (d)F

�
1

g(d)xt�1

�
: (2)

Let us note a few things about this system. The right hand side is non-decreasing in xt�1,

and when starting with xt�1 = 0 the generated next period level of adoption is xt = 0 (noting

that F (1) = 1). Provided x1 � x0, this system converges upwards to some point above x0.

Note that this happens even if we allow the initial adopters to only stay adopters if they

prefer to. Once we have gotten to x1, this includes exactly those who prefer to have adopted

given the initial shock of x0, and now the level is either above or below x0, depending on the

speci�cs of the system.

So we can ask what minimal x0 is needed in order to have the action B di�use throughout

the population; that is, to have xt converge to a point above the initial point. We call this

minimal x0 the tipping point of the system:4 We can then also ask what xt converges to.

In order to gain some insights regarding how the network structure (as captured through

P ) and how preferences vary with degree (as captured through g), we examine a case where

F is the uniform distribution on some interval [0; b].

4In general, it is possible to have multiple convergence points depending on the initial seeding. Here
we look for the smallest seeding that will lead to some upwards convergence, and consequently analyze its
corresponding convergence point. In many cases, there will be a unique point that we could converge to
from below.
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In that case, (2) becomes

xt = 1�
X
d

dP (d)
�d
min[1;

1

bg(d)xt�1
]: (3)

In a case where xt�1 is large enough so that bg(d)xt�1 � 1 for each d, then we can rewrite

this as

xt�1(1� xt) =
X
d

dP (d)

b �dg(d)
: (4)

Let  =
P

d
dP (d)

b �dg(d)
.

From (4) we deduce the following proposition.

Proposition 1. Suppose that F is uniform on [0; b] and bg(d)(1�
p
1� 4)=2 � 1 for all d.

� If x0 < (1�
p
1� 4)=2 then the system converges to x� = 0.

� If x0 � (1�
p
1� 4)=2 then the system converges (upwards) to x� = (1+

p
1� 4)=2.

Proposition 1 tells us that (1 �
p
1� 4)=2 is the tipping point of the system, beyond

which there is convergence upwards. If the initial number of adopters is pushed above this

level, then the dynamics converge upwards to an eventual point of x� = (1+
p
1� 4)=2. If

the threshold is not reached, then the system collapses back to 0.

Figure 1 illustrates the dynamics of the system by showing the dependence of xt+1 on xt.

The �gures are for a bene�t/cost distribution which is uniform on [0; 5] (F � U [0; 5]) and a

scale-free network with power 2:5: That is, P (d) / d�2:5 for d 6 D = 1000:5 The relationship
between xt+1 and xt are drawn for g(d) = 1; g(d) = d; and g(d) = d2:

As is clearly seen, up to a certain xt; the resulting xt+1 = 0. Beyond this point there is a

range where xt+1 > 0, but still xt > xt+1. The tipping point is the �rst point where xt+1 = xt.

5Scale-free networks have been claimed to approximate the degree distributions of some social networks,
ranging from the World Wide Web links to phone lines (see Newman (2003) for an overview), and have
been identi�ed by a power parameter which falls in between 2 and 3. Jackson and Rogers (2004) provide
empirical �ts illustrating the diversity of degree distributions that real-world social networks exhibit. In
particular, some networks previously claimed to be scale-free are, in fact, not so. Nevertheless, the scale-free
distributions are a class that has been extensively used in parts of the literature to model social networks
and are thus of some interest, and they do capture some features of observed networks.
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Above that point, we see that xt+1 > xt, up to the second point where xt+1 = xt. This second

point is where the system converges to if the initial tipping threshold is surpassed. If the

tipping point is not initially surpassed, then the system converges back to 0.

xt

xt+1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

g(d)=1

g(d)=d

g(d)=d2

Figure 1: Tipping Dynamics

When we look above the tipping point, we see that the population of those choosing

B increases, with increasing speed at �rst, and then decreasing speed later on. For higher

values of g(d); the returns from a marginal increase in the probability of a neighbor choosing

the action B is higher and hence the tipping point is lower and the response to any �xed

fraction of the population choosing B is higher in terms of the new fraction of agents choosing

B. These sorts of changes in the rate of convergence are characteristic of a wide variety of

settings, as we now show.

Let

G(x) =
1
�d

X
d

dP (d) (1� F [1=(g(d)x)]) (5)
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so that xt+1 = G(xt): Note that if F (y) is a strictly increasing function then G(x) is strictly

increasing as well. In particular, if one starts with any x0 such that G(x0) > x0, then the

resulting xt's will form an increasing sequence and converge upwards to some limit. The

shape of the dynamic process depends on the shape of the function G: As we show below, if

the initial threshold is passed, then the speed with which the fraction of B adopters increases

is increasing at �rst, and decreasing after some threshold point in time.

Proposition 2. If F (y) is strictly increasing and yF (y) is a convex function of y, then

there exists T 2 f0; 1; : : : ;1g such that if 0 � t < T; then xt

xt�1 <
xt+1

xt
and if t > T; then

xt

xt�1 >
xt+1

xt
(where x�1 = G�1(x0) provided x0 > 0).

Proof of Proposition 2: Using (5), we write

xt+1 = G(xt) and
xt+1

xt
=
G(xt)

xt
:

Now, �
G(x)

x

�0
=

P
d dP (d)

h
1

g(d)x
f
�

1
g(d)x

�
+ F

�
1

g(d)x

�
� 1
i

�dx2

Notice that yf(y) + F (y) = (yF (y))0. If (yF (y))00 > 0; then as x increases, the numerator

decreases. Suppose we start with su�ciently high x0 so that x1 > x0: In that case, xt+1 > xt

for all t; and
�
G(xt)
xt

�0
decreases with time, either reaching 0 at which case T < 1; or not.

Alternatively, if x0 is so low so that x1 < x0 then xt+1 < xt for all t; and
�
G(xt)
xt

�0
increases

with time. If
�
G(x0)
x0

�0
> 0 then T = 0. If

�
G(x0)
x0

�0
< 0; then T > 0; (in fact, if

�
G(xt)
xt

�0
converges below 0 then T = 1). If x1 = x0; then the steady state is achieved immediately

and T = 0:

2.3. Comparisons across Networks. We can also deduce how the tipping threshold

and eventual adoption fraction change as the network structure is varied. This is an impor-

tant issue in many contexts. In marketing, the tipping points for the initiations of fashions

(in products, in the use of a new technology, etc.) may di�er across demographics if those are
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characterized by di�erent social structures. In epidemiology, the likelihood of the eruption

of an epidemic may depend on the underlying social network. These are but two of many

possible examples.

The network shifts we consider are characterized by statistical shifts of the relevant degree

distributions. In particular, we consider shifts that raise the fraction of agents with many

neighbors (First Order Stochastic Dominance, or FOSD, shifts), and shifts that raise the

heterogeneity of connectedness in the population (Second Order Stochastic Dominance, or

SOSD, shifts).

Note that from Proposition 1 we see that any change that leads  =
P

d
dP (d)

b �dg(d)
to increase

will lead to a higher threshold and lower eventual convergence point. A decrease in  will

do the reverse. Since shifts in the degree distribution P a�ect  in very particular ways, we

can deduce the implications of a variety of network shifts.

The �rst proposition addresses �rst order stochastic dominance shifts in the degree dis-

tribution.

Proposition 3. Suppose that F is uniform on [0; b], that bg(d)(1�
p
1� 4)=2 � 1 for all

d, and that P �rst order stochastically dominates P 0.

(1) If d=g(d) is a decreasing function of d, then the tipping point is lower and the upper

convergence point is higher under P .

(2) If d=g(d) is an increasing function of d, then the tipping point is higher and the upper

convergence point is lower under P .

(3) If d=g(d) is constant, then the tipping point and the upper convergence point under P

are the same as under P 0.

Proposition 3 follows directly from noting that the change in  due to a �rst order

stochastic dominance shift in the distribution depends on whether d=g(d) is an increasing or

decreasing function of d.6

6First order stochastic dominance of P over P 0 is equivalent to having the expectation of all increasing
functions be larger under P than under P 0 (and decreasing functions be smaller).
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Proposition 3 tells us something about how adding links to the network changes the

convergence behavior. In cases where d=g(d) is a decreasing function of d we see that this

leads to lower thresholds and higher convergence points. This situation corresponds to

situations where g(d) increases in d more rapidly than d. Thus, larger degree nodes become

more sensitive to neighbors adopting the behavior. In such a situation, increasing average

degree (in the sense of FOSD) increases overall sensitivity of the population to the behavior

of others, leading to lower thresholds and higher convergence. The reverse is true if d=g(d)

is decreasing.

Addressing SOSD shifts, we use a similar logic to deduce the following proposition.

Proposition 4. Suppose that F is uniform on [0; b] and suppose that bg(d)(1�
p
1� 4)=2 �

1 for all d. Consider P that second order stochastically dominates P 0.

(1) If d=g(d) is strictly concave, then the tipping point is lower and the upper convergence

point is higher under P 0.

(2) If d=g(d) is strictly convex, then the tipping point is higher and the upper convergence

point is lower under P 0.

(3) If g(d) is either linear or constant, then the tipping point and the upper convergence

point are the same.

Again, the proof is achieved directly from examining the changes in  due to the SOSD

shift in distributions.7

This proposition provides a look at how changing the spread in degrees throughout the

population changes the behavior of di�usion.

To illustrate the conditions in Propositions 3 and 4, consider g(d) = �d�, where � � 0.

In that case, d=g(d) = d1��=�. This is concave and increasing if 0 < � < 1 and is convex

and decreasing if � > 1. Note that g(d) is constant if � = 0 and d=g(d) is constant if � = 1.

7If P second order stochastically dominates P 0, then it leads to larger expectations of all strictly concave
functions, and smaller expectations of strictly convex functions.
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3. Conclusions

We introduced a simple model of behavioral shifts in the presence of network externalities

and network structure. There are three main insights that come out of the paper. First,

the dynamics are characterized by a threshold level of initial adopters: a tipping point. If

that point is surpassed, then there is an increase in the eventual number of adopters of the

behavior. If the initial number of adopters falls below this threshold, then the behavior will

eventually die out. Second, if the tipping point is surpassed, then the di�usion dynamics are

characterized by increasing speeds of adoption initially and slower speeds of adoption later

on. Third, under some assumptions on the primitives of the model, we can describe how the

tipping point and eventual convergence point depend on the network structure. First order

and second order stochastic dominance shifts in the degree distributions a�ect the tipping

point as well as the convergence point in ways that depend on the returns to each agent from

a �xed fraction of her neighbors choosing to adopt the action in question.
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