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1. Introduction 

In the England and Wales public examinations systems the reporting of pass results is by 

grades: A* - E for General Certificate of Secondary Education (GCSE) and grades A-E 

for the Advanced (A) level General Certificate of Education. Principally for purposes of 

selection to higher education, the A-level grades are converted to a University Central 

Admissions Service (UCAS) tariff of points scores. These are scored for each subject 

examination taken (A=10, B=8, C=6, D=4, E=2, with F indicating unclassified or fail at 

0). They are then often summed to provide a total point score for each candidate  in 

assessing student achievement. Typical diets are three or four of these subjects but some 

students take more or less, with the latter also offering on occasion other qualifications at 

this level.  

 

Most research on A-level examinations to date, particularly in studies of school 

effectiveness, has used either the point score by subject or such summative scores and 

they are used in this form by government in the production of ‘performance indicators’ or 

‘league tables’ (O’Donoghue et al., 1996). One of the drawbacks to the use of scores is 

that information is lost about the actual distribution over grades in particular subjects, 

when inferences are made at the level of the school. A school mean score in a particular 

subject could be the result of different individual student grade distributions. Thus an 

average score could be produced by most students performing very close to the median 

grade or by some performing very well and some very badly; the distinction between two 

such schools potentially being important. 

 

The present paper develops explanatory models for the actual grades and compares these 

with the standard point scoring system. The aim is to gain additional insights from using 

the former as opposed to the latter models. This is done using multilevel models which 

recognise the essentially hierarchical nature of examination data with students nested 

within schools. For the point scoring system standard Normal theory models are applied, 

whilst for the grades less well known ordered categorical response models are used. A 
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technical advantage of the latter lies in the fact that they do not require strong scaling 

assumptions, merely the existence of an ordering. They are also not subject to estimation 

problems arising from grouped observations of an assumed continuous response scale. 

Further they do not require a basic normality assumption over the scale, although this is 

not problematic in the point scores used in our examples. It is also possible that the use of 

the ordered categorical models will result in models with fewer higher order fixed or 

random effect parameters to fit the data. Many of these comparative criteria are reviewed 

in Fielding (1999, 2002).  

 

In Section 2 we discuss the source of our database, the variables available and the 

educational context of  the application. Section 3 reviews normal theory continuous 

response multilevel models and we stress the importance in our context of allowing  

random regression coefficients. Multilevel models for ordered  categories are introduced 

in Section 4 . Existing work on such models using a variety of estimation procedures  

(e.g. Ezzett and Whitehead,1991; Jansen, 1990; Harville and Mee, 1984;  Hedeker and 

Gibbons, 1994, 1996;  Saei and McGilchrist, 1996; Saei et al, 1996; Chan et al, 1998) is 

extended since methods in our software allows more flexibility in allowing random 

coefficient specifications. We also consider estimation of specific random residual 

effects. Section 5  compares results on the normal points score and ordered models for 

our application and highlights methodological and substantive points of interest. Section 

6, 7 and 8 detail some important consequences about prior ability GCSE effects, the 

prediction of A level grades, and the use of  residual estimates for institution value added. 

In Section 9 we extend ordinal logit models by considering non proportional changing 

odds for fixed effect variables such as gender in similar ways to Hedeker and 

Mermelstein (1998). Saei and McGilchrist (1998) also allow non proportional fixed time 

effects in panel data. However we  entertain the possibility of more complexity and also 

consider developments by considering non proportional multilevel random effects for our 

institutions. The latter prove very informative in the context of our application. We 

conclude in the discussion by focusing on the practical significance of the results, show 

that the more complex models may improve fit, and consider future directions. 
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Whilst a central thrust of this paper is methodological, some important substantive results 

emerge, especially in terms of gender differences and institutional variation. These are 

highlighted by the use of the variants of  the multilevel  ordered category response 

models considered.  

 

2. Data and source 

In this paper we utilise information provided by the U.K. Department for Education and 

Employment (DfEE) from its database of linked A/AS-level and GCSE examination 

results (O'Donoghue et al., 1996). The AS (Advanced Supplementary) qualifications are 

intermediate ones usually taken after one year of study. Grades are usually scored at one 

half the corresponding A level grade. Each individual’s outcomes for each subject and 

qualification are recorded. Additionally a limited range of information is available on 

certain background factors. We have student’s gender, date of birth and previous 

educational achievements, as well as the type of their educational establishment, local 

education authority, region and examination board.  

 

In this study, we concentrate on A level outcomes in 1997 for two subjects: Chemistry 

and Geography. There are a number of reasons for these particular choices of subjects. 

The principal reason is that these two subjects are popular, giving a reasonable number of 

entries which could be matched to previous General Certificate of Secondary (GCSE) 

results. These will be used as prior achievement variables. They are the normal secondary 

school qualifications taken by most students at the end of compulsory education prior to 

any further advanced study. Total A-level entries are 30,910 in 2409 institutions  for 

Chemistry and 33,276 in 2317 institutions for Geography. AS-level entries are only 3.5% 

and 3.8% respectively of combined totals. Given this small incidence and also noting that 

for present purposes modelling essentially different outcomes simultaneously would add 

to model complexity, the AS entries are not included in  analyses  In both these subjects 

only 1.8% of students had several A-level entries and in these cases all entries except the 

final one scored zero. Thus single best entry, indicative of achievement in that subject, 

was entered into our analyses without loss of substantive meaning. Another reason for the 
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choice of these two subjects is that they have distinct distributions of grades. As Table 1 

shows, the grade distribution for Chemistry was skewed towards grades A and B, whilst 

that for Geography was more nearly symmetrical. They therefore provide good examples 

in comparing model sensitivities to distributional shape. 

 

     (Table 1 about here) 

 

It was also decided to omit extreme small outlying groups of 0.36% of Chemistry and  

0.37% of Geography students who had very low average GCSE scores well separated 

from the  main distribution (3 or less using scores discussed below). 

 

In many analyses of  aggregate educational performance scores, transformation by 

normalising has been a practical way of overcoming problems in modelling due to the 

presence of marked ceilings and floors in the score range. This also helps with model 

assumptions of normal errors (Goldstein, 1995). In this paper with  single subject grade 

score responses experimentation with normalising transformations did not noticeably 

improve the error distribution of the data compared to using the raw point score. With a 

limited number of discrete values the effect of grouping is a likely caveat, but this is  

present even under transformation. A further point is that effects are more easily 

interpretable on the raw points score scale  and also make comparisons between models 

for scores and the grades more direct. 

 

A mean centred average GCSE score, GA, is derived from all GCSE subjects of the 

student with scores A*=7, A=6, B=5, C=4, D=3, E=2. This is used  as  a prior attainment 

covariate in modelling. Also used are available student level covariates, gender of the 

student (Females=1; Males=0) and centred age. The cohort is aged between 18 and 19 

years with a mean of 18.5 years. We also introduce the mean of GA (Sch-GA) and  

standard deviation of GA (Sch-SD) at the level of the institution as possible institution 

level effects. Institutions were also formed into 11 categories according to their 

admission policy and type of funding. Most are publicly funded at the local level as Local 

Education Authority (LEA) Maintained Schools. Of these schools in LEAs having no 
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selection by ability at entry (most LEAs) are Comprehensive (M/C). In selective areas 

schools are usually either Selective (M/S) with the rest designated Modern (M/M). There 

are also Grant Maintained Institutions funded directly from central government  with a 

similar selection typology according to their local area (GM/C, GM/S, GM/M). 

Independent schools are privately funded and usually fee-paying and are either Selective 

or Non-Selective (IND/S, IND/NS). Sixth Form Colleges (SFC) and Further Education 

Colleges (FE) are institutions catering specifically for students beyond the compulsory 

education age of 16 and are funded directly by central government through a funding 

council. In the main there is a heavier concentration of A-level work in the SFCs. There 

is a small miscellaneous range of other types (Other). In models dummy explanatory 

variables were formed with M/C as the base category. The examination boards involved 

in the study were Associated Examining Board (AEB), Cambridge (Camb), London, 

Oxford, Joint Matriculation Board (JMB), Oxford-Cambridge joint delegacy (OXCAM), 

and the Welsh board, WJEC.  The latter has only a few entries and did not show obvious 

difference from AEB in data exploration. Thus these two boards were combined to form 

the base of  dummies for other boards . Fuller details of these variables and their 

educational context in the UK is given by Yang and Woodhouse (2001). 

  

3. Statistical models for point scores 

As a base for evaluating further developments we can formulate a  standard  variance 

components model for points with institutions at level 2 and students at level 1:   

 

0 ijojij uy eβ= + +                     (1). 

 

 Here  denotes the UCAS scored response for the grade of an  A level subject offered 

by the i  student from the  school. The term   u  is the   institution random  

effect and assumed ~ . The within institution student level disturbance is 

. We note an implicit normality assumption for the response which further 

means it is assumed continuous.  For our grade scored data this is strictly untenable but 

ijy

th

0N(

thj
2
0u,σ )

oj
thj

0N(

2
ij ee ~ ),σ
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may sometimes be  assumed to hold approximately for the arbitrary scale on which the 

points are located. 

 

We can now add to the model covariates such as are introduced in the previous section.. 

We can allow covariates which are polynomial terms in continuous variables, interactions 

between main factors and so on. We write  

 

0 0= + + +ij ij j ijy u eβ X β                              (2). 

 

Here  is a vector of fixed effect coefficients associated with such factors and covariates 

in the data vector . Goldstein (1995) gives terminology and details of  fitting such  

types of model.  

β

ijX

 

As other researchers have shown, we need in general to fit random coefficients models to 

adequately describe  institution level variation (O'Donoghue et al, 1996; Goldstein and 

Spiegelhalter,1996; Yang and Woodhouse, 2001). Extending by these means we have a 

model of the form 

 

= + +ij ij ij j ijy eX β Z u  with 

1 11    1= =ij ij ij ij{ ,x ...}, { ,z ...}X Z .                                 (3). 

Tβ is now  with  u . 0 1{ β ,β ...}, 0 1=T
j j j{ u ,u ...}

 

Usually, but not always, most of the Z variables are a subset of the X variables.  The 

elements of  u  are random variables at the institution level and are assumed dependent 

multivariate normal with expectation zero. 

T
j

 

In the following analyses variants of  models of types  (1), (2), (3) are  developed for A 

level Chemistry and Geography point scores separately. 
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4. Multilevel models for ordered categories 

We now exposit parallel formulations modelling ordered grade responses directly without 

reference to explicit scoring scales. The six categories of response  A-F  are denoted by  

integer labels s=1,2,3,4,5,6.  Following the single level model methods of McCullagh and 

Nelder (1989) we use generalised linear models with cumulative probabilities associated 

with responses as dependent. For the i  student from the  institution  the probability 

of a grade higher than that represented by s is denoted by  .  We have 

.  We note that although probabilities for s are 

cumulated upwards those of the  ordered grades are cumulated  downwards. This proves 

convenient for interpretation. It is the changing nature of this whole probability 

distribution for individuals in response to fixed and random explanatory effects that we 

now wish to model. In continuous (normal) response models by contrast we model 

conditional expectations given the set of these effects.  

th thj
(s)

ijγ
(1) (2) (5)0 ...ij ij ijγ γ γ< < < < < ij

( )6 1γ =

 

However, we usually desire models in which effects operate in a linear and additive 

fashion. A monotonic ‘link’  transformation of a set  of cumulative probabilities on the 

[0, 1] scale to the real line usually facilitates this in generalised linear models. In general 

this link transformation can be any inverse distribution function of a continuous variable. 

In particular the logit (inverse logistic), complementary log-log (inverse Weibull) and 

probit (inverse normal) are frequently used. Conceptually a set of thresholds or cut-points 

on this link scale for each individual are determined by the individual’s probability 

distribution over the grades and vice-versa (Bock, 1975). Thus in our case a link 

transformation of     (s=1,2….6)  corresponds to sequential  positions  on the whole 

real line,   

γ )(s
ij

(2)
ijα α(1) (3) (4) (5)( , , , , ,ij ij ij ijα α α )+∞ ,  with  constituting thresholds for the 

grades. Fixed and random effects operate linearly on these thresholds and hence 

indirectly on  the probabilities over the ordered grades. A related  conception used in 

)(s
ijα
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ordinal models by many researchers (e.g. McCullagh, 1980; Hedeker & Gibbons, 1994; 

Fielding, 1999) is through the notion of an unmeasured and arbitrarily scaled  latent 

variable. This is assumed to underlie the ordered grades and varies continuously along 

the real line. The ordered categories represent contiguous intervals on this variable with 

unknown but fixed thresholds.  The latent response  is assumed governed by a linear 

model, and  in our case a  multilevel linear model. Different distributional assumptions 

about the latent variable may be shown to generate particular generalised linear models 

for ordered categories of the type under consideration. There are some advantages in 

these ideas since interpretation of results can be made directly on the scale of the latent 

variable. However, here we shall not be directly concerned with such an interpretation 

since our principal aim is to compare the different kinds of inferences arising from the 

Normal points  and ordinal models. However, Fielding and Yang (1999) further discuss 

this idea. Also, when we allow more complexity in randomly varying thresholds as we do 

later in the paper, it is not clear that  latent variable interpretations can be easily adapted. 

 

Goldstein (1995) discusses the formulation of these models in a multilevel context. In the 

main we deal with  logit models. Comparable to the base variance components model (1)  

is  

  { }
( )

( ) ( ) ( )
0( )logit log

1

 
 = = = − 
 

s

s ij s s
ij jsij

ij

uα α
γ

γ
γ

+      (s=1,2,3,4,5)             (4). 

A fit to model (4) estimates a series of marginal location cut-points  conceptually similar 

to the intercept of model (1). Again for the  educational establishment there is a 

single random  effect u  which is assumed ~

thj

(0,N0 j 0

2 )uσ . Individual  responses follows a 

multinomial distribution determined by their set of grade probabilities, although 

estimation procedures can allow for extra-multinomial variation (Goldstein, 1995)1.  

 

                                                 
1 Even when multinomial variation may be assumed there may be advantages in estimator quality by 
allowing  an extra multinomial parameter to operate (see Yang, 1997; Fielding and Yang, 1999)). We have 
allowed it in our present analyses though its estimate usually suggests multinomial variation is appropriate.  
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Analogously to model (2) we extend the basic model  by adding to the model appropriate 

fixed effect  covariates. We now have 

 

( )
( )

( ) ( )
0( )

( )logit log
1

 
 = = = + − 
 

s

ij s s
ij ij js

ij

s uij α α
γ

γ
γ

X β +                (5)2. 

This model possess the proportional odds property (McCullagh, 1980). For all s the fixed 

or random effects operate on  cumulative odds by a constant multiplicative factors.  More 

detailed explanation of this and an  illustration of parameter interpretation is given by 

Yang (2001). 

 

Further, by analogy with the random coefficients model  (3) we have  

 

( )
( )

( ) ( )
( )

( )logit log
1

s

ij s s
ij ij ij js

ij

s
ij α α

γ
γ

γ

 
 = = = + − 
 

X β Z u+

                                                

   (6). 

This has similar normality assumptions about the vector of  random components . ju

 

5. Comparison of results between the Normal point score and the ordinal models 

To fit the normal models we use the iterative generalised least squares (IGLS) procedures 

of MLwiN (Rasbash et al, 1999). Ordinal model results all use penalised quasi-likelihood  

in the MLwiN macros MULTICAT (Yang et al, 1999), incorporating the improved 

 
2  A referee of this paper has suggested that as written this model might  imply that the sign of a β k is the 
reverse of the direction of the effect of a variable on the underlying response. This is usually a consequence 
of an upward shift in  probabilities cumulated upwards on the ordered scale implying a downward shift in 
the response. This often causes confusion in interpreting results. Attempts to remove this by inserting  
negative signs before the β k and random effects have often been suggested, but this may cause further 
confusion (Fielding, 1999). In our formulation and as defined our cumulation is downward on the grade 
scale and both these interpretational difficulties are removed. The signs of the coefficients will be the same 
as the direction of effects on the underlying response.  We feel that this may  possibly be adopted in 
standard practice to good effect.  
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second order procedures (PQL2) of Goldstein and Rasbash (1996). Yang (1997) 

discusses the validity and statistical properties of these estimators.  

 

In this section we compare parameter estimates and individual institution residual 

estimates for the normal and ordinal models. Table 2 provides the comparative results for 

base models (1) and (4). Tables 3 and 4 give results for two variants of models (2) and 

(5). Firstly we adjust for a range of background characteristics of student, institution, and 

exam board but exclude the main intake ability characteristic, student GCSE average. 

Table 4 then adds variables derived from the latter in various ways. In particular 

polynomial terms in GA are introduced (GA^2, GA^3, GA^4), interactions of these with 

gender (GA-F, GA^2-F, GA^3-F), and the aggregated institutional level intake score. 

This is a useful extension since it draws a distinction between control for extraneous 

factors affecting raw performance and  assessing progress using initial intake 

achievement covariates. This is standard in educational performance research where it is 

desired to highlight types of control on institutional effects (Willms (1992)). We do not 

attempt model selection here and include many relevant parameter estimates that on 

diagnosis are not statistically significant. Our purpose is a broad comparison of the 

models within frameworks familiar in educational research. 

 

Since the parameters associated with the same variable relate to different scales under the  

model type comparisons we report as precision measures the standardised t-ratios of  

parameter estimates to  estimated standard errors. The broad pattern of covariate effects 

are the same under normal and ordinal model assumptions. Generally , Ezzett and 

Whitehead (1992) have commented that major effects will emerge and are relatively 

insensitive to model formulation, though we may expect size of estimates to differ 

somewhat. In our case precision measures of regression parameter estimates are very 

similar between model types. Formal tests on these  yield the same inferential 

conclusions. Impressions from either model type closely agree. No real difference in 

impact on broad substantive interpretation emerges. Precision of the school level variance 

is slightly higher in all cases for ordinal models  but the improvement is  barely 

discernable 
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(Tables 2 and 3 about here) 

 

We can comment on the broadly  similar patterns of covariate effects for models of  

Table 3, which do not adjust for intake achievement. In general, better performances 

come from females and younger students. Compared to the base M/C schools, selective 

schools of all types have significantly higher achievement. Modern schools have lower 

performance but this is not statistically discernable for M/M in Chemistry. Sixth form 

colleges and others (mainly sixth form centres in schools) also perform better but in 

neither case are results statistically significant for Geography. FE colleges have much 

lower achievement generally. GM/C and IND/NS schools are not significantly different 

from their maintained comprehensive (MC) counterparts. The estimates of dummy 

parameters for boards relative to AEB / WJEC reveal significantly higher average grade 

performances for OXCAM, JMB and CAMB Chemistry examinations. Oxford has 

significantly worse performance in Geography. Other board effects are not  significantly 

different  from the base. 

 

The results in Table 4 additional have the additional prior achievement covariates at both 

institutional and student levels. Effect estimates in this table thus relate to 'adjusted 

performance' and relate to progress over the course of A level study. As before, 

conclusions from models (2b) and (5b) are comparable. In both subjects younger students 

make more progress in addition to having higher general achievement. However, boys 

now make more progress than girls despite girls being higher achievers, as also noted by 

O'Donoghue et al. (1996). M/S and GM/S selective schools now lose their significant  

comparative advantage when progress rather than raw performance is the criterion. 

However, the effect of IND/S is statistically significant in both subjects. M/M, GM/C and 

IND/NS  schools make no significantly different progress from M/C in either subject. 

GM/M seem to do worse but the effect is significant only for Geography. Sixth form 

colleges achieve higher progress in Chemistry than the base M/C type but no longer have 

the advantage in Geography. FE colleges show significantly lower progress in Geography 

but this does not carry over for Chemistry. The pattern of board effects for adjusted 
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performance in Chemistry is similar to those on raw performance exhibited in Table 3. 

However, CAMB now joins Oxford in having significantly worse adjusted performance 

in Geography. Other board effects are again not distinguishable. All these general 

substantive findings are similar to those of Yang & Woodhouse (2001) based on 

aggregate A/AS points scores for the whole database.  

 

(Table 4 about here) 

6. The nature of GCSE effects 

Prior achievement as measured by GCSE results  have formed an  input into the second 

group of models. It is this fact that often enables researchers to treat institutional effects 

as ‘adjusted’ and form a basis for a ‘value-added’ criterion. The way it operates in  

combination with other factors has been likened to economic concept of an educational 

production function. This paper and others (Goldstein & Thomas, 1996; O’Donoghue et 

al, 1997; Yang & Woodhouse, 2001) show that this production function should include 

many non-linear terms in the covariates. Thus in Table 4 polynomial terms of order up to 

four in prior achievement  have been included to allow a possibly necessary fine non-

linear graduation of the response to this variable particularly at the extremes. Institution 

context factors such as Sch-GA and Sch-SD will also often  have a discernible influence. 

Sch-D may , for instance, be useful in examining what, if any, is the impact of 

homogeneity of school intake on progress. The gender differentiation of GCSE effects is 

represented by terms for  the interaction  with the female gender dummy variable.  

   

As indicated by the t-ratio precision measures Table 4  the normal model evidenced 

significant polynomial terms in GCSE average up to the fourth order. The ordinal logit 

model required only a quadratic function. As a result of polynomial effects, the nature of 

the interaction of gender with prior ability cannot be simply expressed as a single 

additive element. However, the normal model exhibited interactions for both subjects but 

the ordinal model only for Chemistry. This may be due to the skewed nature of its 

response distribution over grades or could be related to differential impacts of ceilings 

and floors. In the context of primary school progress, Fielding (1999) notes that ordered 
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category models seem to be more parsimonious in many circumstances and require fewer 

complex fixed effect terms. It is further noted there that this requirement may be 

conditioned by the response distributions. The results here seem to confirm these 

impressions. The normal model seems much more sensitive to the actual values of GCSE 

scores than the logit model. 

 

In both types of model the effects of school intake contexts appear relatively small but 

with Sch-GA having a marginally significant effect in Chemistry and within  school 

heterogeneity (Sch-SD) having a positive effect in Geography. 

 

7. The use of ordinal models in predicting grade distributions 

In A level work teachers are expected to predict A level performances for university 

entrance purposes. Normal models give score predictions which may be difficult to relate 

to grades. A more useful approach might be to evaluate the 'chances' that a certain student 

will achieve certain grade thresholds.  Ordinal models have a very useful role in this area 

by predicting directly the probability that students with given background characteristics 

and initial ability will achieve certain grades. Normal models can only do this indirectly 

from the conditional means and variances and assumptions that grade boundaries are 

placed appropriately along the points scale (5.0 to 7.0, for instance for grade C). Using 

estimates from Model 5(b) in Table 4, we illustrate in Figure 1 the ‘chances’ of 

achievement estimated for two female students having the same set of background 

covariate values but different GCSE average scores. Student 1, with a high GCSE score 

of 7.5, has a very high chance of achieving a Chemistry grade no less than B on A level 

Chemistry; while Student 2, with a GCSE score of 5, is most likely to achieve a grade no 

higher than D. Estimates from Model 2(b) in Table 4 for these two students give  A level 

point score predictions as 9.8 and 1.9 respectively. Although they are roughly equivalent 

to grades A and E, they represent conditional expectations only. Using  individual level 

variance estimates a predicted grade distribution could also be calculated from the 

assumed normal ( e.g. probability of grade C would be found from the area between 5 

and 6 ).  However, assumed  normality on the underlying arbitrary raw points scale is 
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crucial  when applied in this context. Model estimates may be reasonably robust to 

departures from the normality assumption. Interval predictions may not be quite so 

robust. Even relatively small departures from normality in the true  distribution over the 

raw points scale might yield quite different predictions. This is a further aspect of 

sensitivity to the arbitrary score scale and  normal assumptions over it.  No such fixing of 

a scale or constraining distributional assumptions are  required for ordinal models. 

(Figure 1 about here) 

8. Value added estimates using school residuals 

We  have also incorporated random coefficients in the models as in  (3) and (6). Detailed 

results are not illustrated here. However, significant random coefficients at the 

institutional level for  both model types and subjects were the female gender and the first 

order GA term. Thus we now have three random effects for each institution which could 

be estimated by MlwiN residual procedures. Models 3 and 6 in our discussion and 

diagram below relate to fits of  models with these two extra random effects added to the 

models of Table 4. However, we focus on the intercept residual estimates only. Since GA 

was centred these represent institution average adjusted effects or 'value added', as they 

often termed in the educational literature. They relate to males with an average  GCSE 

score, having allowed in the model  for possible differential institutional effects on 

students of different gender and prior achievement. This approach gave us a set of 

homogenous institution residual estimates that enable us to investigate  mild changes of 

assessment of  institutional  ‘added value’ between the model approaches. We also 

diagnostically checked certain model assumptions for ensuring the comparability 

between models. The distributions of the standardised institution intercept residuals for 

the two models on both A-level subjects are very close to normality as seen by the 

normal plots in Figures 2 and 3. Residuals from the model approaches are closely related. 

The correlation coefficients and rank correlations between the institution residual 

estimates  from each pair of models are:  

 

  Chemistry Geography 

 Establishment residuals 0.982 0.968 
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 Ranks of establishment residuals 0.983 0.970 

 

Note that these correlations are somewhat inflated because of  'shrinkage' factors 

Nevertheless, they and inspection of the residual scatter plots, not illustrated here,  

suggest a strong agreement between model types for institution ‘value added’ estimates. 

Given the fairly complex  and full modelling of covariates and effects we would usually 

not expect otherwise. However, they are not perfect and there is scope for some 

movement in the positioning of individual institutions. Correlations can be relatively 

insensitive to these. Even mild sensitivity to model formulation is potentially of 

substantive interest. In particular, we might investigate any dependency on models of the 

identification of institutions at the extremes of the range of  effects.  

 

[Figures 2 and 3 about here] 

 

Thus we now examine in detail some selected institutions. We choose four for each 

subject. Two of these  are in the middle of the distribution of the institution residual 

estimates for Chemistry normal models . These are also examined for Geography. 

Further, for each subject separately, two extreme institutions  are selected. Some details 

on the selected institutes are listed in Table 5. Table 6 shows the ranks of the residuals of 

the selected institutions in each model, the residual estimates and their standard errors. 

Also shown are 95% overlap intervals (Goldstein and Healy 1995) converted into 

equivalent intervals of ranks. 

 

[Tables 5 and 6 about here] 

 

The results show that extreme schools are detected with either model.  In the middle of 

the distribution, however, there are often considerable differences in rankings.  There is 

important sensitivity of 'league table' position to the chosen adjustment model even when 

both include the same covariates. The intervals for institutions 1 and 2 on Chemistry, 

whose ranks are only 66 apart (1317 – 1251), overlap considerably for the normal model. 

However, even in the ordinal model for this case where rankings are about 1000 apart 
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(1706 – 702), and much more clearly separated, there is still considerable overlap of the 

intervals. For Geography, institutions 1 and 2 being less concentrated in the middle of the 

rank range, have separable intervals under both models, but less clearly so for the ordinal 

model. However, it requires rankings differing by 1502 and 1472 respectively to achieve 

these separations. Although the extreme institutions have a much more consistent ranking 

there are one or two other features worthy of note. For Geography, institution 5  (highest 

ranked on the ordinal model) and 2  have relatively short rank differences of 111 and 300 

for normal and ordinal models respectively. However, at the top end of the range their 

intervals do not overlap for the ordinal model and only just for the normal. Rank intervals 

for extreme cases are very short. There appears to be a clearer separation between pairs 

as we move away from the middle of the distribution. The same phenomenon occurs at 

the lower end. 

 

9. Extensions of the ordinal model  

So far the ordinal logit models have the  proportional odds feature  implied by  fixed cut-

point thresholds not varying across observations. However, more flexibility can be 

introduced by allowing interactions of thresholds with covariates or allowing random  

thresholds effects across level 2. For example, as it stands, the fitted ordinal model in 

Table 4 suggests that the additive main effect of gender on the  cumulative log-odds is 

the same across grades. Covariate changes shift only the location of the entire grade 

distribution keeping the relative odds proportional. We can relax this by interacting  

covariates with cut-points. For instance, interacting with gender means the  cut-points for 

males and females are no longer separated by a single additive gender effect, and gender 

can affect cumulative odds non proportionally across grades. Indeed , there  is some 

preliminary evidence that a proportional odds gender effect may not be  tenable. In Table 

1 in Geography, for instance, more female students achieved the top two grades than 

males and vice versa for the bottom two grades. The distributional differences between 

genders may be more complex than a constant shift in cumulative log-odds. The 

suggested non-proportional extensions can be fitted fairly readily by adaptation of the 

quasi-likelihood procedures in the MLwiN  MULTICAT macros that we use.  
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  9.1.  Model with non-proportional changing odds 

 

Model 7 below extends the fixed part of Model 5 in these directions. We focus on non-

proportional gender effects since these have evoked our interest. For ease of exposition 

we revert to the model with a single variance at level 2. We have investigated extensions 

to Model 6 with little difference of substance to the arguments we present. This type of 

model has been called a multilevel thresholds of change model (MTCM) by Hedeker & 

Mermelstein (1998). 

 

 Letting   be 1 if the i  person from  institute  is female, we write ijt th j

( ) ( ) ( ) ( )
0

( )logit = = + + +s s s
ij ij ij j

s tij α α ωγ X β u     (7). 

Estimates of the cut-points ( )sα  determine the cumulative grade distribution of males 

conditional on other explanatory variables, and estimates of 
( ) ( )( )+s sα ω  those of 

females. Similar terms could be introduced for other explanatory covariates and higher 

order interactions are also possible3. 

 

(Table 7 about here) 

 

The results of fitting model 7 are displayed in Table 7. They suggest definite interactions 

of cut points with gender and hence a non proportional effect of gender on cumulative 

odds. 

 

(Figure 4 about here) 

 

                                                 
3 McCullagh and Nelder (1989, p155) and also Hedeker and Mermelstein (1998) comment that for 
continuous covariates this may unfortunately lead to negative fitted values for some values of covariates. In 
our case we have checked that this would not occur inside the observed range if we were to entertain non 
proportional odds for  covariates in our data such as  GA.  
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The ratios of cumulative odds of males to females at each threshold are displayed in 

Figure 4 and contrasted with the constant proportional odds ratios of Model 5.  It is 

clearly seen that the overall negative effect of females estimated by model 5 on 

Geography was mainly because female students achieve relatively few high grades, 

having adjusted for their GCSE average score. For Chemistry there is a different pattern 

with relatively more females in middle grades and slightly more failures than a 

proportionality assumption would warrant. Differences in skewness of the distributions 

of grades in the two subjects may play a role and the importance of these is underlined by 

this type of ordinal model. 

   

  9.2. Random institution effects on cut-points for the distribution over grades 

 

In the same way that we consider odds changing non-proportionally for different values 

of covariates we can allow non-proportionality of the random institution effect. This is 

achieved by allowing  the cut points to vary randomly across institutions. Thus we now 

generalise model  (7), which had a single random effect, by incorporating  a set of grade 

specific cut-points  ( ( ) ( )s s

ojuα + , s = 1, 2, 3, 4, 5)  for each institution. The model is 

( ) ( ) ( ) ( ) ( )( )logit = = + + +s s s
ij ij ij oj

s tij α α ωγ X β su    (8). 

Here,  u 0 . 
0

(1) (2) (5)
0 0 0{ , ,........ } ~ ( , )′=oj j j j uu u u MVN Ω

 

The  Ω  is a (5 x 5) covariance matrix of the separate random  effects.  For simplicity 

we also assume that the interacting  gender coefficients are fixed, that is, there is no 

differential institutional effect by gender.  

ou

 

The estimates for model 8 are also given in Table 7. The institution random effect 

parameters are shown separately in the lower part of Table 8. The fixed part results show 

main effects similar to those estimated by model 7  for both Chemistry and Geography 

but there are some changes to the base (male) and female cut-points. From the random 
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parameter estimates we see that there is relatively more institutional variation at grade A 

and F thresholds in Geography. For Chemistry the F threshold parameter exhibits most 

variation. Such sources of institutional variation at crucial thresholds may be potentially 

of more substantive interest then overall average levels of adjusted performance.  

(Table 8 about here) 

 

Detailed diagnostic normal plots of all estimated standardised residuals from model (8), 

though not illustrated, showed good agreement with the normality assumption for both 

subjects. 

 

For the same institutions previously investigated in Section 8 estimates of the full set of 

cut point residuals in model 8 are illustrated in  Figures 5.1 and 5.2. These show a 

relatively constant pattern of effects over the grades on Chemistry for institutions 2, 3 

and 4 and are not much different from results observed in  Table 6. These institutions 

could be interpreted as having relatively uniform effect on students across all levels of 

ability. Institution 1 has a below average conditional expectation of achieving at least 

either of the top two thresholds, about the same as average for above grade C, and above 

average for the proportion not failing or achieving above grade D. It would be interesting 

to examine the practice at  this institution , which seems to have a better than expected  

overall pass rate but a relatively lower than expected achievement at the top end of the 

grading. This pattern is further displayed in detail for males in Figure 6.1 which contrasts 

the predicted A level grades in Chemistry for typical males in Institution 1 with similar 

males in the base group of students. It will be noted that compared to the similar base 

group there appear relatively fewer in the  bottom three categories but much higher 

proportions in Grades B and C. 

 

For Geography the effect of Institutions 1 and 2 are approximately proportional across 

grade thresholds. Institutions 5 and 6, occupying the highest and lowest positions in 

Table 6, have a profile of threshold effects that are parallel and consequently with a 

similar relative pattern but at different absolute levels. Given their general levels, the size 

of their effects declines relative to all institutions as we move through the grade 
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thresholds. They are  relatively  rather better  at  targeting  top grades than they are at 

getting students above low thresholds and passing. Institution 6, for instance, is not too 

far from average in its effect on top grade chances (and better than Institution 1) but its 

low overall position is due to ‘deficiencies’ at lower thresholds. Figure 6.2 presents the 

predicted distributions of A level Geography grades for males of mean age with mean 

GCSE in Institution 5 at the top of the scale and Institution 6 at the bottom. Although as 

expected Institution 5 has a much higher proportion of Grade A’s, there is little 

difference between Institution 6 and that of the base group in this respect. The impact of 

failures on the overall position of Institution 6 is obvious from this diagram. There is a 

further important general caveat for predictions for particular institutions. These use 

residual estimates which have uncertainty and require some caution as stressed by 

Goldstein & Spiegelhalter (1996). Often the residuals are based on relatively small 

numbers of students so that the standard errors of estimates can be quite large. Thus, for 

example, in the present comparisons in Geography  Institution 1 has a standard error for 

the grade B cut-point of 0.299.   Conditional on the fixed point estimates a 95% 

confidence interval for the logit can be constructed. Converting to the cumulative 

probabilities gives an approximate interval of 28.1% to 56.1% for above grade B. In 

principle, for more detailed analysis,  intervals can be constructed for  overall predictions 

of full grade distributions for each institution.  

[Figures 5 and 6 about here] 

 

10 Discussion 

 

In this paper we have demonstrated a flexible range of models for educational grades 

treated as ordered responses. The operational definition of the outcome variable is at no 

higher a level of measurement than this. Assumptions of continuous response  multilevel 

models with scores may thus be inappropriate, particularly since there are few scored 

grades. Statistical objections have ranged from those about the scaling implied by 

arbitrariness in scoring  through to continuous distribution properties applied to discrete 

measurements and to bias in estimation due to grouping. A review of some literature on 
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this is given by Fielding (1999) and a recent general contribution is Kampen and 

Swyngedouw (2000).  

 

From a practical and substantive view normal linear models are certainly useful and have 

the virtue of familiarity with very accessible methodology and software. Certainly, this 

paper shows that the general scale of fixed effects is relatively insensitive to model 

formulation. Estimated precision of the fixed effect estimates are also comparable, 

although little is known about how the estimated precision is affected by the discrete 

nature of the observed data.  However, for institution specific details there are 

considerable differences between the models. In this respect it may be argued that ordinal 

models make fewer restrictive assumptions about the response distribution and provide 

conclusions which are less open to substantive query. Although the intercept residuals 

from models 3 and 6 are highly correlated, the location of  specific institutions in their 

range can  vary  greatly. For instance, Institution 2 for Chemistry is at the 29th percentile 

of ranked residuals on the ordinal model and at the 55th percentile for the normal model 

(see Table 6). It is true that these positions are both subject to uncertainty but the 

question arises as to the appropriateness of the modelling if we want to draw substantive 

‘value added’ conclusions.  

 

From a practical point of view in educational research the ordinal models also offer as 

much information as do normal models, and it could be argued more. The ‘newness’ of 

ordinal models and (until recently) lack of suitable software may have acted as practical 

deterrent, but this is being remedied. The ability to convey predictive information 

through probability distributions, which cannot easily be done using standard models, is a 

particular advantage. Since grades and levels are standard modes of reporting  it may 

obviously be useful to relate the interpretations of results to these. A predicted point 

score for an individual, even when contextualised in terms of the conditional mean of a 

continuous distribution, has less ready an interpretation when grades and levels are the 

medium of converse. The implications of the use of ordinal models in such practical areas 

as target setting within schools may be clear. 
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Ordinal models also  seem to be capable of extension in substantively useful ways. Their 

characterisation in terms of grade probability responses  permits flexible parameterisation 

for a variety of conditions. Our analyses have mainly been concerned to comment on the 

practical significance of this. However, these additional complexities also considerably 

improves the fit of models.  A simultaneous Wald test ( available in MlwiN)  on 

parameters , the interactions between the gender variable and the cut-points in the 

fixed part of (7) yielded significant  

ω )(s

2

5χ =132.8 for Geography and  =580.8 for 

Chemistry.  Secondly, a restriction that all 15  variance and covariance parameters of the  

separate random effects at the institution level in (8) are equal to a common parameter 

value reduces it to the single effect model of (7).  An approximate  Wald test on this 

yields very significant  χ =164.9 for Geography and 

2

5χ

2

14

2

14χ =261.7 for Chemistry. From a 

practical view we have seen, for instance, that by allowing cut-points to interact with 

gender we can study gender differences in distributions in greater detail. As discussed 

these differences go further than simply differences in average performance. By allowing 

random cut-points institutional differences can also be exhibited in more meaningful 

ways. They can be compared at important  thresholds rather than through simple mean 

levels of adjusted achievements. Thus Institution 1 in Chemistry has lower grade A 

achievements than expected but it also has lower failures. Institution 6 in Geography has 

a considerable failure rate but does quite well in achieving high grades compared to other 

typical institutions. Differences between institutions in such respects might well engage 

the interest of effectiveness researchers and policy makers as of  much if not more 

relevance than differences in ‘average’ achievement or progress.  

 

An aspect of ordinal model we have not discussed in any detail is the nature of the link 

function. We have focused on the familiar logit. However, we have also carried out some 

investigations using a probit link which will be  available in the latest issue of 

MULTICAT. A probit link is often interpreted in terms of  normally distributed latent 

variable. Thus it  might seem to fit more easily into comparisons with normal linear 

models. There is a conventional wisdom in the generalised linear modelling literature 
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(e.g. McCullagh and Nelder, 1989; Greene, 2000) that important results are relatively 

insensitive to this choice of link. This is often attributed to the similarity of the logistic 

and normal distributions except at the tails. Preliminary results show some differences 

but none are startling. However, methodological work comparing logit, probit and other 

links in the multilevel context is under way and needs further advancing. 

 

If, as we claim, ordinal models are worthy of more extensive application they need also 

to be developed further in a number of important directions. Ordinal models with cross-

classified random effects at higher levels have been considered by Fielding & Yang 

(1999). Multivariate response  multilevel models for continuous variables are developed 

and quite widely used in education (Goldstein and Sammons, 1997; Yang et al , 2001 ). 

In our investigations with Model 7 we compared the two sets of cut-point residuals for 

institutions which had Geography and Chemistry in common. A general impression 

conveyed was that there were two major groups of institutions. One group was those 

institutions whose effects for the  two subjects were similar relative to all schools. 

However, another major group had relatively high ‘adjusted’ performances in one subject 

together with a low achievement in the other. There are some interesting practical 

questions here about the differential 'effectiveness' of schools in different A level subjects 

and the relationships between subject grades at both student and institutional level. 

Multivariate ordinal response multilevel model developments are required for this. Their 

characterisation is not so easy as the analogous continuous variable specifying normal 

correlation structures. Nor would their estimation be as easily adaptable from standard 

available procedures. Promising lines of inquiry which we have started to investigate for 

multilevel structures is log-linear characterisation of the multivariate distributions and 

multivariate logit and probit (Joe, 1997; Lesaffre and Molenberghs, 1991; Molenberghs 

and Lesaffre, 1994) Other developments we envisage are multivariate models for mixed 

continuous and ordered category responses, and to parallel the longitudinal binary 

response models of Yang et al. (2000), variants for ordered categorisations. The latter 

situation has received some attention in the generalised estimating equation (GEE) 

literature (Lipsitz and Kim, 1994)) but these are  population averaging methods As such 
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they concentrate mainly on ways of obtaining efficient fixed effects estimates and cannot 

at present  be used to investigate the detailed structure of multilevel effects.           
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Tables 

Table 1. Frequency distributions on A-level Chemistry and Geography (1997) on 
cases which had matching students’ GCSE results 
 Chemistry (2,409 institutions) Geography (2,317 institutions) 
Grades Number Overall

% 
Male 
% 

Female 
% 

Entry Overall 
% 

Male 
% 

Female 
% 

A 
B 
C 
D 
E 
F 

6,680 
6,666 
5,732 
4,611 
3,606 
3,615 

21.6 
21.6 
18.5 
14.9 
11.7 
11.7 

21.8 
21.2 
18.0 
14.8 
11.7 
12.5 

21.4 
22.1 
19.2 
15.0 
11.6 
10.7 

4,170 
7,407 
7,885 
6,297 
4,271 
3,246 

12.5 
22.3 
23.7 
18.9 
12.8 
9.8 

10.8 
20.4 
23.7 
20.3 
14.2 
10.6 

14.7 
24.5 
23.7 
17.2 
11.1 
8.7 

Total 30,910 100.0 100.0 100.0 33,276 100.0 100.0 99.9 
 Average A-level point score: 5.83 

    (Males = 5.78; Females = 5.89) 
Average GCSE point score: 6.30 
    (Males = 6.16; Females = 6.47) 

Average A-level point score: 5.47 
   (Males = 5.23; Females = 5.76) 
Average GCSE point score: 5.85 
   (Males = 5.70; Females = 6.04) 
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Table 2. Model estimates for variance component model (1) and basic ordinal model 
(4) 

Model  (1) Model  (4) 
Param. Chemistry Geography Param. Chemistry Geography 
 Estimate Precision

* 
Estimate Precision  Estimate Precision Estimate Precision 

0β  5.349   5.250  ( )1α  
-1.881  -2.405  

     ( )2α  
-0.668  -0.913  

     ( )3α  
 0.248   0.230  

     ( )4α  
 1.106   1.274  

     ( )5α  
 2.089   2.406  

u
2σ  

2.829 24.90 2.017 24.41 
u
2σ  

 1.190 25.50  0.995 25.38 

e
2σ  

8.507  7.228  Extra-
multinom
ial 
variation 

 0.945   0.959  

*Note: Precision=estimate/standard error. This measure was not calculated for the intercept in the Normal point score 
model nor for the thresholds in the ordinal model, or for level 1 parameters, as  they relate to non comparable 
quantities across the two approaches. 
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Table 3. Model estimates and precision of estimates for models (2) and (5) without 
adjusting for GCSE average score* 

Model 2(a) Model 5(a) 
Parameter Chemistry Geography Parameter Chemistry Geography 
 Estimate Precision Estimate Precision  Estimate Precision Estimate Precision 

0β  4.318   4.571  ( )1α  -2.511  -2.883  

     ( )2α  -1.297  -1.382  

     ( )3α  -0.383  -0.233  

     ( )4α   0.470   0.814  

     ( )5α   1.446   1.946  

Female 
Age 
M/S 
M/M 
GM/C 
GM/S 
GM/M 
IND/S 
IND/NS 
SFC 
FE 
Other 
Camb 
London 
Oxford 
JMB 
OXCAM 

 0.169 
-0.004 
 1.239 
-0.481 
 0.011 
 1.513 
-2.119 
 2.187 
 0.076 
 0.569 
-0.993 
 1.083 
 0.700 
 0.169 
-0.136 
 0.725 
 1.085 

 4.40 
-0.82 
 6.49 
-0.86 
 0.10 
 9.70 
-2.84 
 23.3 
 0.27 
 3.95 
-7.22 
 3.30 
 5.11 
 1.31 
-0.59 
 5.50 
 7.48 

 0.553 
-0.003 
 1.291 
-0.948 
 0.086 
 1.288 
-2.321 
 1.694 
 0.214 
 0.109 
-1.012 
 0.195 
-0.193 
 0.230 
-1.267 
 0.231 
 0.228 

 16.7 
-0.64 
 7.51 
-2.78 
 0.90 
 9.20 
-5.28 
 18.7 
 0.81 
 0.86 
-8.25 
 0.59 
-1.87 
 2.71 
-6.54 
 2.17 
 1.61 

Female 
Age 
M/S 
M/M 
GM/C 
GM/S 
GM/M 
IND/S 
IND/NS 
SFC 
FE 
Other 
Camb 
London 
Oxford 
JMB 
OXCAM 

 0.099 
-0.003 
 0.755 
-0.300 
 0.001 
 0.933 
-1.296 
 1.407 
 0.041 
 0.343 
-0.653 
 0.603 
 0.441 
 0.097 
-0.092 
 0.458 
 0.654 

 4.30 
-1.07 
 6.22 
-0.87 
 0.02 
 9.39 
-2.78 
 23.5 
 0.24 
 3.73 
-7.55 
 2.93 
 5.19 
 1.20 
-0.64 
 5.55 
 7.27 

 0.383 
-0.002 
 0.869 
-0.624 
 0.073 
 0.885 
-1.728 
 1.185 
 0.167 
 0.069 
-0.704 
 0.150 
-0.122 
 0.149 
-0.835 
 0.149 
 0.123 

 17.6 
-0.63 
 7.27 
-2.69 
 1.11 
 9.05 
-5.59 
 18.9 
 0.93 
 0.78 
-8.32 
 0.66 
-1.71 
 2.55 
-6.28 
 2.04 
 1.26 

u
2σ   1.662  21.71  1.236  21.50 

u
2σ   0.698  22.83  0.623  22.57 

e
2σ   8.521  7.173  Extra-

multinomi
al  
variation 
 

 0.951    0.959  

* See note on precision results in Table 2. 
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Table 4 Model estimates and precision of estimates for models 2 and 5 adjusting for  
GCSE average 

Model 2(b) Model 5(b) 
 Chemistry Geography Var. Chemistry Geography 
 Estimate Precision Estimate Precision  Estimate Precision Estimate Precision 

0β   5.272   5.224  ( )1α  
-2.950  -3.614  

     ( )2α  
-1.104  -1.404  

     ( )3α  
 0.247   0.276  

     ( )4α  
 1.436   1.718  

     ( )5α  
 2.704   3.147  

Female 
Age 
M/S 
M/M 
GM/C 
GM/S 
GM/M 
IND/S 
IND/NS 
SFC 
FE 
Other 
Camb. 
London 
Oxford 
JMB 
OxCam 
GA 
GA^2 
GA^3 
GA^4 
GA-F 
GA^2-F 
GA^3-F 
Sch-GA 
Sch-SD 

-0.900 
-0.039 
-0.033 
 0.521 
-0.019 
 0.114 
-1.366 
 0.266 
-0.161 
 0.477 
-0.159 
 0.699 
 0.628 
-0.005 
-0.303 
 0.476 
 1.207 
 3.309 
 0.255 
-0.404 
-0.099 
-0.048 
 0.275 
 0.087 
 0.175 
 0.210 

-24.7 
-10.4 
-0.23 
 1.25 
-0.22 
 0.95 
-2.45 
 3.24 
-0.77 
 4.44 
-1.53 
 2.86 
 6.16 
-0.05 
-1.76 
 4.83 
 11.2 
 79.2 
 7.31 
-17.0 
-9.61 
-0.86 
 7.45 
 3.38 
 2.82 
 1.71 

-0.348 
-0.026 
 0.060 
-0.127 
 0.085 
 0.023 
-1.088 
 0.239 
-0.040 
-0.010 
-0.445 
-0.329 
-0.400 
 0.091 
-1.397 
-0.036 
-0.014 
 2.808 
 0.236 
-0.219 
-0.042 
 0.088 
 0.066 
N/A 
 0.108 
 0.329 

-11.3 
-7.94 
 0.44 
-0.49 
 1.17 
 0.21 
-3.23 
 3.05 
-0.20 
-0.10 
-4.69 
-1.31 
-5.06 
 1.40 
-9.44 
-0.44 
-0.13 
 93.9 
 7.61 
-17.5 
-5.45 
 2.87 
 2.48 
N/A 
 1.86 
 2.79 

Female 
Age 
M/S 
M/M 
GM/C 
GM/S 
GM/M 
IND/S 
IND/NS 
SFC 
FE 
Other 
Camb. 
London 
Oxford 
JMB 
OxCam 
GA 
GA^2 
GA^3 
GA^4 
GA-F 
GA^2-F 
GA^3-F 
Sch-GA 
Sch-SD 

-0.720 
-0.035 
-0.065 
 0.395 
-0.017 
 0.069 
-1.251 
 0.242 
-0.147 
 0.402 
-0.179 
 0.577 
 0.579 
 0.005 
-0.212 
 0.460 
 1.054 
 2.600 
 0.484 
-0.035 
-0.013 
-0.201 
 0.114 
 0.076 
 0.151 
 0.146 

-23.4 
-11.7 
-0.50 
 1.10 
-0.23 
 0.65 
-2.57 
 3.08 
-0.82 
 4.38 
-1.96 
 2.70 
 6.51 
 0.06 
-1.41 
 5.34 
 11.2 
 65.2 
 15.1 
-1.32 
-1.30 
-4.24 
 2.93 
 2.97 
 2.76  
 1.38 

-0.304 
-0.025 
 0.069 
-0.057 
 0.099 
 0.038 
-1.174 
 0.247 
-0.051 
-0.025 
-0.414 
-0.361 
-0.358 
 0.084 
-1.281 
-0.046 
-0.044 
 2.437 
 0.377 
-0.047 
-0.007 
 0.049 
 0.028 
N/A 
 0.094 
 0.333 

-11.1 
-8.61 
 0.53 
-0.23 
 1.43 
 0.36 
-3.58 
 3.34 
-0.27 
-0.27 
-4.60 
-1.51 
-4.77 
 1.35 
-9.22 
-0.60 
-0.42 
 77.6 
 12.6 
-3.36 
-0.92 
 1.69 
 1.08 
N/A 
 1.71 
 3.03 

u
2σ  

 

 0.910  21.52  0.733  21.77 
u
2σ  

 

 0.754  22.85  0.705  23.11 

e
2σ  

 4.820   4.112  Extra-
multinom
ial  
variance 

 0.928   0.945  

* See note on precision results in Table 2. 
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Table 5. Selected institutes with institutional characteristics 
 

Instn. Number of A level entries 

by gender  (male :  female) 

Exam 

Board 

Instn. 

Type 

Mean GSCE point score of 

individual students  

Mean A-level point score of 

individual students 

 Chemistry Geography   Chemistry Geography Chemistry Geography 

1 19 : 28 29 : 29 CAMB 6th Form 5.84 5.74 5.19 4.93 

2   0 : 14   0 : 30 OXCAM IND/S 7.46 6.78 9.71 7.93 

3   6 : 0  AMB IND/S 6.79  3.00  

4 14 : 12  CAMB G/C 5.28  6.54  

5  45 : 27 CAMB 6th Form  5.70  6.75 

6  17 : 21 London 6th Form  5.33  1.42 
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Table 6 School value added estimates for the Normal and Ordinal models 

School Rank of residuals Residual estimate 
(S.E.) 

Ranks corresponding 
to 95% overlap 

intervals of residuals 

 Normal 
Model 3 

Ordinal 
Model 6 

Normal 
Model 3 

Ordinal 
Model 6 

Normal 
Model 3 

Ordinal 
Model 6 

Chemistry 
1 
2 
3 
4 

 
1251 
1317 
2406 
      1 

 
  1706 
    702 
  2405 
        2 

 
-0.02 (0.38) 
-0.07 (0.58) 
-2.11 (0.65) 
 2.75 (0.43) 

 
-0.35 (0.26) 
 0.37 (0.69) 
-2.08 (0.56) 
 2.31 (0.46) 
 

 
1209 ~ 2020 
    71 ~ 1940 
2324 ~ 2408 
      1 ~     23 

 
1209 ~ 2068 
    50 ~ 1971 
2347 ~ 2409 
      1 ~     11 

Geography 
1 
2 
5 
6 

 
1615 
  113 
      2 
2316 

 
1773 
  301 
      1 
2317 

 
-0.30 (0.30) 
 1.04 (0.50) 
 2.09 (0.27) 
-2.28 (0.36) 

 
-0.46 (0.30) 
 0.69 (0.51) 
 2.69 (0.31) 
-2.94 (0.39) 
 

 
  985 ~ 2045 
      6 ~   663 
      1 ~     10 
2308 ~ 2317 

 
1226 ~ 2133 
    46 ~ 1198 
       1 ~      4 
2316 ~ 2317 
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Table 7 Parameter estimates for Models 7 and 8 by subject* 

Model 7 Model 8 
Var. Chemistry Geography Chemistry Geography 
 Estimat

e 
Precision Estimate Precision Estimate Precision Estimate Precision 

( )1α  
-2.899 -26.1 -3.551 -34.8 -2.775 -32.3 -3.600 -35.0 

( )2α  
-1.084 -9.85 -1.401 -14.4 -0.955 -11.4 -1.344 -13.9 

( )3α  
 0.228 2.07  0.261  2.69  0.334  3.98  0.318  3.28 

( )4α  
 1.384 12.6  1.710  17.4  1.490  17.5  1.789  18.3 

( )5α  
 2.598 23.2  3.158  31.3  2.764  31.4  3.340  32.7 

( )1ω  
-0.856 -17.8 -0.434 -8.04 -0.841 -17.9 -0.408 -7.56 

( )2ω  
-0.786 -21.8 -0.312 -8.91 -0.775 -22.8 -0.304 -8.00 

(3)ω  
-0.697 -19.4 -0.271 -8.47 -0.695 -20.4 -0.269 -8.68 

( )4ω  
-0.621 -15.2 -0.289 -7.61 -0.623 -16.0 -0.278 -7.51 

(5)ω  
-0.488 -9.38 -0.333 -6.53 -0.476 -9.33 -0.310 -6.08 

Age 
M/S 
M/M 
GM/C 
GM/S 
GM/M 
IND/S 
IND/NS 
SFC 
FE 
Other 
Camb. 
London 
Oxford 
JMB 
OXCAM 
GA 
GA^2 
GA^3 
GA-F 
GA^2-F 
GA^3-F 
Sch-GA 
Sch-SD 

-0.036 
-0.064 
 0.395 
-0.017 
 0.070 
-1.258 
 0.241 
-0.149 
 0.403 
-0.182 
 0.583 
 0.581 
 0.006 
-0.215 
 0.460 
 1.054 
 2.545 
 0.487 
-0.029 
-0.070 
 0.111 
 0.064 
 0.150 
 0.144 

-12.0 
-0.50  
 1.10 
-0.23  
 0.65 
-2.57  
 3.35 
-0.83 
 4.20 
-1.98 
 2.71 
 6.53 
 0.07 
-1.42 
 5.35  
 11.2  
 62.1 
 15.2 
-1.12 
-1.32 
 2.78 
 2.46 
 2.73 
 1.36 

-0.025 
 0.069 
-0.057 
 0.099 
 0.039 
-1.176 
 0.248 
-0.051 
-0.025 
-0.413 
-0.361 
-0.359 
 0.084 
-1.283 
-0.047 
-0.045 
 2.417 
 0.367 
-0.047 
 0.089 
 0.055 
  n/a 
 0.094 
 0.333 

-8.33 
 0.53 
-0.23 
 1.43 
 0.36 
-3.57  
 3.35 
-0.27 
-0.27 
-4.59 
-1.50 
-4.79 
 1.35 
-9.23 
-0.61 
-0.43 
 73.2 
 12.2 
-3.35 
 2.41  
 1.96  
n/a 
 1.71 
 3.03 

-0.036 
-0.078 
 0.350 
-0.012 
 0.078 
-1.319 
 0.244 
-0.149 
 0.434 
-0.115 
 0.631 
 0.547 
-0.019 
-0.223 
 0.454 
 1.026 
 2.497 
 0.459 
  n/a 
 -0.052 
 0.104 
 0.055 
 0.119 
 n/a 

-12.0 
-0.62 
 0.98 
-0.17 
 0.75 
-2.63 
 3.44 
-0.84  
 4.67 
-1.25 
 2.99 
 6.22 
-0.23 
-1.49 
 5.28  
 11.0  
 89.2  
 27.0 
 n/s 
-1.08 
 3.25 
 2.89 
 2.16 
 n/a 

-0.026 
 0.089 
-0.077 
 0.099 
 0.022 
-1.125 
 0.251 
-0.044 
-0.012 
-0.368 
-0.345 
-0.444 
 0.033 
-1.429 
-0.121 
-0.077 
 2.410 
 0.371 
-0.023 
 0.090 
 0.043 
 n/a 
 0.105 
 0.323  

-8.67  
 0.68 
-0.31 
 1.43 
 0.21 
-3.27 
 3.39 
-0.24 
-0.13 
-4.04 
-1.43 
-5.92  
 0.53 
-10.1 
-1.57 
-0.74  
 83.1 
 18.6 
-2.30 
 2.57 
 1.59 
 n/a  
 1.88 
 2.94 
  

u
2σ  

 

 0.759  23.0  0.706  22.8  
School level variance-covariance, see table 8 

Extra-
multinomial 
variation 

0.928 ST. err= 
0.003 

 0.946 ST err= 
0.004 

 0.871  ST. err= 
0.003 

 0.853  ST. err= 
0.003  

* See note in Table 2 on definition of precision measure 
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Table 8. Variance-covariance estimates of the cut-points for Chemistry (the first 
line) and Geography (the second line) at school level, SE in parentheses, correlation 
coefficients in the upper triangle of the table 
 A Above B Above C Above D Above  E 

A 0.806 (0.047) 

1.157 (0.068) 

0.92 

0.88 

0.83 

0.70 

0.78 

0.56 

0.48 

0.61 

Above B 0.699 (0.037) 

0.803 (0.043) 

0.714 (0.037) 

0.725 (0.037) 

0.94 

0.92 

0.88 

0.80 

0.63 

0.81 

Above C 0.659 (0.036) 

0.658 (0.040) 

0.701 (0.035) 

0.683 (0.033) 

0.785 (0.039) 

0.755 (0.036) 

0.97 

0.95 

0.80 

0.96 

Above D 0.658 (0.038) 

0.549 (0.043) 

0.700 (0.035) 

0.630 (0.033) 

0.807 (0.039) 

0.770 (0.036) 

0.883 (0.045) 

0.863 (0.043) 

0.92 

0.99 

Above E 0.479 (0.055) 

0.716 (0.045) 

0.594 (0.041) 

0.758 (0.041) 

0.791 (0.043) 

0.908 (0.044) 

0.965 (0.050) 

1.002 (0.050) 

1.236 (0.070) 

1.194 (0.066) 
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Figure 1 Predicted distribution of A level grades for Chemistry for Ordinal model 
5(b) for two students. (Student 1: female of 18.5 years old from an independent 
selective school  with exam board Oxford-Cambridge with overall GCSE score as 
7.5. Student 2: same as student 1 but a lower GCSE average score of 5)
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Figure 2 Normal score (y axis) by standardised residual (x axis) for the Normal 
model 3 and Ordinal model 6, for Chemistry 
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Figure 3 Normal score (y axis) by standardised residual ( x axis) for the Normal 
model 3 and Ordinal model 6, for Geography. 
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Figure 4 Gender effects on grade threshold probabilities: ratios of cumulative odds 

between  females and males estimated by models 5 and 7  
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Figure 5.1 Plots of residuals of 4 institutions for A-level Chemistry, logit scale 
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Figure 5.2 Plots of residuals of 4 institutions for A-level geography, logit scale 
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Figure 6.1 

 
Predicted distributions of A-level Chemistry for males of mean age with mean 
GCSE score: Overall base group of maintained comprehensive schools with AEB 
board compared with Institution 1 ( a sixth form college and Cambridge Board) 
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Figure 6.2  

 
Predicted distributions of A-level Geography  for males of mean age with mean 
GCSE score: Overall base group of maintained comprehensive schools with AEB 
board compared with institution 5 ( a sixth form college and Cambridge Board) and 
institution 6 ( a sixth form college with London Board) 
 
 

 
 
 

-42- 


	1. Introduction
	2. Data and source
	3. Statistical models for point scores
	4. Multilevel models for ordered categories
	5. Comparison of results between the Normal point score and the ordinal models
	6. The nature of GCSE effects
	7. The use of ordinal models in predicting grade distributions
	8. Value added estimates using school residuals
	9. Extensions of the ordinal model
	9.1.  Model with non-proportional changing odds
	9.2. Random institution effects on cut-points for the distribution over grades

	10 Discussion
	Acknowledgements
	References
	Tables
	
	
	
	
	
	
	
	Number of A level entries by gender  (male :  female)
	Mean GSCE point score of individual students
	Mean A-level point score of individual students








	Table 6 School value added estimates for the Normal and Ordinal models
	Figures
	
	
	
	
	
	Figure 5.2 Plots of residuals of 4 institutions for A-level geography, logit scale







