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Summary

This paper proposes a procedure for producing consistent and asymptotically efficient

moment-based estimators for a multilevel model with randomly missing explanatory or

response variables.  The procedure is essentially an extension of existing procedures based

upon multiple imputation but is computationally efficient and avoids the need to generate

multiple data sets to which multilevel models are fitted.  It is also shown that the procedure

copes effectively with informatively missing data values when the missingness mechanism is

incorporated into the estimation procedure.  It has close parallels with moment-based

estimators for errors in variables models.
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1.  Introduction

A characteristic of many data sets is that some of the intended measurements are unavailable.

For example, this may occur through chance or because certain questions are left unanswered

by particular groups of respondents.  An important distinction is made between situations

where the existence of a missing data item can be considered a random event and those

situations where it is informative and the result of a non-random mechanism.  Randomly

missing data may be missing ‘completely at random’ or ‘at random’ conditionally on the values

of other measurements.  This paper will be concerned with these two types of random event.

Where data cannot be assumed to be missing at random, one approach is to attempt to model

the missingness mechanism, and then to impute the missing values from this model.  Such

imputations or predictions can be treated in similar ways to those described below.

We consider the problem of missing data in two parts.  First we describe a procedure,

appropriate for multilevel data, for predicting data values which are missing. Then we study

ways of obtaining model parameter estimates from the resulting ‘filled-in’ or ‘completed’ data

set.

Two common procedures for dealing with missing data are either to exclude all data records

where any variable value is missing (listwise deletion) or to substitute ‘plausible’ (imputed)

values for the missing items.  In multiple regression modelling missing data are sometimes

handled by computing the required covariance matrix from all pairwise non-missing data.  This

procedure, however, can lead to inconsistencies.  Where data items are missing completely at

random, the listwise deletion procedure will produce unbiased estimates but these will be

inefficient when a high proportion of records is excluded.  Methods based upon the use of



plausible or imputed values underlie most recommended procedures and detailed discussions

are given by Rubin (1987) and Little (1992).  The method to be described in the present paper

is an elaboration of these procedures and is designed to provide consistent estimators which

are also computationally more efficient.  We are interested in multilevel models but first review

the problem in relation to a single-level model for simplicity.

The procedure has two stages.  In common with other imputation procedures the first stage

involves the creation of a completed data set based on a model which produces predicted

values for the missing items.  The second stage produces the required parameter estimates

based upon the results of the first-stage model.

2.  Creating and using a completed data set

Consider the ordinary single-level univariate linear model for the i-th unit

Y X X ei i i i= + + +β β β0 1 1 2 2 (1)

Suppose that some of the X i1  are missing completely at random (MCAR) or conditionally

missing at random (MAR) conditional on X2  and suppose for the moment that there are no

missing values of Yi : these are allowed in the general model described in Section 7.  Label the

unknown values X i1
* .  The first stage of our procedure considers the estimation of these by

predicting them from the remaining observations and the parameter set θ  for the prediction

model

x E X X X Yi i1 1 1 2= ( | , , , )* θ (2)



If the data are MAR conditional on X2  then this variable should be conditioned on when

obtaining the predictions as well as being incorporated in (1) and we shall assume in such cases

that X2  has no missing values.  Where we have no missing values on Y  or on X 2  then the

prediction (2) is simply the linear regression of X X Y1 2 on , . Several procedures, including the

EM algorithm, are available for obtaining estimates of the missing values (Little, 1992).  Little

and Schluchter (1985) also consider the case of discrete variables. By considering the joint

distribution of all the (non-conditioned) variables, in particular assuming multivariate

Normality, these procedures will also yield maximum likelihood (ML) estimates of the mean

vector and covariance matrix. In the ordinary linear model case these are sufficient statistics

and can be used to obtain estimates and inferences for models such as (1). In this paper we

propose an alternative method which can be used with multilevel models where the simplicity

of  a single level model does not apply.

We note in passing that in the MAR case, if X2  is treated as a ‘response’ belonging to the

multivariate Normal structure then the resulting estimates are not consistent.  Nevertheless, the

incorporation of X2  into the prediction stage may be expected to improve the estimates, and

we shall illustrate this with an example.

Having obtained a completed data set as the first stage of the procedure, one possibility would

be to use this directly in the usual way to estimate the parameters of (1) in a second stage.

Unfortunately, this gives biased parameter estimates because the filled-in data are attenuated,

having too small a variability.  A standard alternative procedure is to correct for this by

generating random variables which are added to the predicted values so that they have the

correct (on average) distributional properties.  These are generated from the residual



covariance matrix estimated from the multivariate regression given by (2).  One cycle of this

procedure generates a new complete data set which is analysed in the usual way.  Several

cycles are executed and suitable averages of the resulting estimates are used for inference, and

this is known as multiple imputation (Rubin, 1987).

Multiple imputation in practice has certain drawbacks, especially in the context of complex

multilevel data structures. Computational time can be an important factor and the need to carry

out several analyses for each model is a disadvantage.  This creates difficulties for model

exploration, and may be a particular problem with secondary data where different analysts,

often with limited resources, wish to work on the same data set.  Instead we propose for the

second stage a procedure which produces consistent interval and point estimates in a single

analysis of the data set.

As we have already pointed out, in the single level Normal linear model, imputation procedures

are unnecessary since we can obtain sufficient statistics using any suitable ML procedure such

as an EM algorithm. In the general multilevel case we can also, in principle, obtain sufficient

statistics for use during each cycle of an iterative algorithm, for example one based upon an

existing EM algorithm or an iterative  generalised least squares (IGLS) algorithm (Bryk and

Raudenbush, 1992, Goldstein 1995). In practice, however, this approach has limitations. There

is a combinatorial increase in the number of sufficient statistics beyond models with 3 levels

which creates severe computational problems. A similar difficulty occurs if a general complex

variance structure is fitted at the lowest level. We do not, therefore, pursue this, but instead

concentrate on the procedure outlined below.



For our simple example the second stage of the procedure considers a model relating the

unknown missing value to its expectation given by (2) as

X x mi i i1 1 1= + (3)

where the ‘residuals’ m i1  are unknown but where we have estimates of their variances and

covariances obtained from the multivariate regression defined by (2) and are assumed to have

zero means.  This model is similar to the basic model used for errors of measurement (Fuller,

1987) except that the role of X i1  is now that of the ‘true’ value which is unknown.  If we

assume that the two terms on the right-hand side of (3) are uncorrelated, then we have

var( ) var( ) var( )X x m1 1 1= + (4)

In effect, multiple random imputation works by generating sets of values of the m i1  from their

estimated distribution. As opposed to the standard multiple imputation procedure, we propose

to work directly with estimates of the quantities in (4), generalised to the multilevel case and

extended to further variables, to produce consistent estimators, and the exposition in Section 7

parallels closely that for obtaining consistent estimators for the errors in variables model.

3.  The multilevel model

We give here a brief exposition of the multilevel model, since this is used in both stages of the

imputation procedure.  For simplicity we describe the 2-level model, and to make it concrete

we can think of the data as consisting of pupils nested within schools. All our results generalise

straightforwardly to three or more levels.  For a general introduction to the topic of multilevel

models see Bryk and Raudenbush (1992), Longford (1993) or Goldstein (1995). These models



are now routinely applied to the analysis of hierarchically structured data such as arise in the

human sciences.

Consider the following 2-level model:
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And nj  is the number of level 1 units in the j-th level 2 unit. We also write
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where Z Z( ) ( ),2 1  are explanatory variable matrices at levels 2 and 1, with (i,j)th rows z zij ij
( ) ( ),2 1 

respectively, and the vectors u and e take the values uj  and eij  for the (i,j)th unit.

The residual matrices E E1 2,   have expectation zero with
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Further details are given in Goldstein (1995, Appendix 2.1)



In the usual way we can form posterior estimates of the random variables and their covariance

matrix

$ | , , , ( $ )u Y u uhj u e hj hjβ Ω Ω ,       cov − (8)

and likewise for those at other levels. The IGLS algorithm is a convenient procedure for

producing ML or REML estimates under multivariate Normality, since it can efficiently handle

multivariate data, many levels and complex level 1 variance structures with a high

computational burden. In the standard case, however, with just 2 or 3 levels and a single

variance describing level 1 variation other algorithms such as EM can be used and may be

more efficient.

4.  Discrete variables with missing data

Suppose we have one or more categorical explanatory variables as well as continuous variables

where both types may have missing values.  The categorical variables will normally be

converted to a series of dummy or indicator variables, one fewer in number than the number of

categories. For each categorical variable we need to obtain, in the first stage of the procedure,

the predicted probabilities of belonging to each category, corresponding to each dummy

variable used in the second stage.  These are then substituted for the missing values to form the

completed data set.  Note that where the proportions in each category are not too extreme, we

may be able to obtain satisfactory predictions simply by assuming multivariate Normality and

we study this in our examples.

More generally, we can use models which consider the joint distribution of categorical and

discrete responses (Goldstein, 1995, Chapter 7), but that is not pursued here.



5.  Estimation for the multilevel model with imputed data

In this section we give estimation details for the second stage of the procedure following the

prediction of the missing values.  We give details for the 2-level model; extensions to higher-

level models are straightforward.  We write
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for the h-th explanatory variable ( , , , )h p= 1 2K  with vector m mh hij= { }  of discrepancies at

levels 1 and 2, and with q  as the discrepancy vector for the response.  We are here using the

term ‘discrepancy’ to refer to the difference between the true unknown value and the (first

stage) imputed value. We use upper case for the true values and lower case for the predicted

values, which are equal to the true values if the variable is not missing.



As in (6) we write the ‘true’ model in the general form

Y X Z u Z eij ij ij ij= + +( ) ( ) ( )( ) ( )β 2 1 (10)

where ( )X ijβ  is the (i,j)th element of Xβ , etc., and Y X Z Z u, , , ,( ) ( )    2 1  and e are as defined

for equations (5) and (6).  We assume that the Z Z( ) ( ),1 2  are known, as is the case for variance

component models. Where Z Z( ) ( ),1 2  contain variables that have missing data the estimation

becomes considerably more complicated (see below) and this is the subject of further research.

For the predicted values we have

y m q x Z u Z e

m m
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with V as defined in (7) and for the moment assumed known (Goldstein, 1995, Appendix 2.1).

We have
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We assume that the discrepancies are random variables with finite fourth moments and

uncorrelated with the predicted values, and so
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Thus, to estimate the fixed parameters we require the expectations on the right hand side of

(14) and we now consider how to obtain these where data are missing at both level 1 and level

2. We then consider the problem of obtaining estimates of the random parameters required to

form V. We now make use of our assumption that Z Z(1) ( ), 2  contain no missing data so that

there are no discrepancies in V which need to be considered when taking expectations.

For level-1 imputed estimates of explanatory variables based upon residuals estimated from the

first stage of the procedure, the (h h1 2, )th element of E( )Tm V m−1  is
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where N  is the total number of level 1 units and σ σij
e h h m
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For the level-2 discrepancies we have the corresponding correction matrix for the explanatory

variables given by

C J V Jn h h j n h h u h h m
j

j
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The ( )nj ×1  vector Jn h hj ( )
*

1 2
, defined for each level-2 unit and for each pair of variables h h1 2,  ,

has i-th element equal to 1 if for the i-th level-1 unit variables h h1 2,  are both missing, and zero

otherwise. The term σ u h h m
j
( )1 2

 is, as in (15), the estimated covariance (or variance) of the level-

2 discrepancies for variables h h1 2, , and Vj
−1  is the j-th block of V −1 .

We now form the corrected matrices and estimate the fixed parameters

$

$

$ $ $

T

T

M x V x C C

M x V y C

M M

XX

XY

XX XY

q

= + +

= +

=

−

−

−

1

1

1

1 2

1

Ω Ω

Ω

β

(18)

The discrepancy covariance matrices used in the formation of C CΩ Ω1 2
,   and C

qΩ1
 are those

given by (9) and are termed the ‘conditional’ ones by Goldstein (1995, Appendix 2.2). We note

the similarity with the errors in measurement case where the discrepancy matrices are

subtracted rather than added in (18).

In the single level case where there is just a single explanatory variable with missing data, these

results reduce to the following. Order the completed data so that the imputed observations are

grouped together first. Then, ignoring any correction for sampling variation, the estimate $M XX

becomes
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where there are n1  predicted values. This is very similar to the correction described by Beale

and Little (1975), although these authors use an estimate based upon the actual observed

residuals calculated from the complete data cases and they approximate the covariance matrix

by $Mxx
−1  (see below).

We now consider the estimation of the parameters of V.  We write
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Unlike the measurement error case the discrepancies m are correlated with the true values and

hence also with the residuals Z Zu e,   which are defined by (16) in terms of the true values. The
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Thus the quantity V Q T T Qc = + + −1 2 2 β  should be added to the cross-product matrix ~~Tyy

based upon the predicted values at each iteration, to form Y *  as in (8) for the estimation of the

random parameters (Goldstein, 1995, Appendix 2.1).

When we estimate the covariance matrix of the estimated coefficients we need to condition on

the known values.  Our sampling scheme implies that the predicted values and hence the

discrepancies are resampled along with the  responses.  We therefore have the following for

the covariance matrix of the fixed parameters

$ E[( ~)( ~) ] $
T T TM x V y x V y MXX XX

− − − −1 1 1 1

which gives the covariance matrix as

$ E[ ~~ ] $
T TM x V yy V x MXX XX

− − − −1 1 1 1 (20)

We can produce so-called sandwich or robust estimators (Goldstein, 1995, Chapter 3) for both

fixed and random parameters.  For the fixed parameters the sandwich estimators are obtained

by substituting directly into (19) the corresponding sample quantities, using the observed

cross-product matrix of residuals with contributions from each block. The model-based

estimator is

$ ( ) $
T TM x V x x V V V x MXX c XX

− − − − −−1 1 1 1 1 (21)

This expression ignores the sampling variation associated with the prediction function for the

missing values.

For the random parameters the covariance matrix is given by

( ) cov( ) ( )* * * * * ** * * * * *T T T
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and the sandwich estimator is obtained by substituting for cov( )**Y  the observed (corrected)

matrix derived from the contributions from each level-2 block indexed by j, namely
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6.  An example using educational test scores

In this set of analyses we fit the following 2-level variance components model to data from the

Junior School Project (JSP), (Mortimore et al., 1988).

Y X X u eij ij ij j ij= + + + +β β β0 1 1 2 2
(23)

where the explanatory variables, respectively, are a Mathematics score taken at 8 years, and

social class (non-manual, manual), and the response variable is a Mathematics test score taken

when the same students were 11 years old.  To carry out our procedure, for the first example

analysis, we assume bivariate Normality for Y X, 1  conditional on X2 .

We have carried out simulations by randomly omitting values of the explanatory variables and

using the procedures of this paper to estimate the model parameters.  In Table 1 we randomly

omit 25% of the 8-year Mathematics scores.  We compare the model estimates with the ‘naive’

procedure of using the predicted values without adjusting for prediction error and with the

estimates from the full data set.



Table 1.  Results of 100 simulations, randomly omitting 25% of 8-year Mathematics
scores each time.

Parameter A B C

Fixed

Intercept 15.25 11.95 15.23

8-year Maths score 0.593 (0.033) (0.043) 0.725 (0.035) 0.596 (0.035) (0.033)

Manual Social class 1.273 (0.44) (0.39) 1.002 (0.43) 1.299 (0.41) (0.38)

Random

Level 2 variance 4.051 (1.18) (1.05) 4.216 (1.19) 4.034 (1.10) (1.27)

Level 1 variance 27.85 (1.36) (2.51) 25.55 (1.25) 27.86 (1.25) (1.42)

Note: Column A gives results for the full data set.  Column B gives results using the
‘naive’ procedure (with model-based standard errors) and column C gives results
using the correction procedures of the paper.  For analysis A the first set of standard
errors are model-based and the second set are sandwich estimates.  For analysis C
the standard errors in the first parentheses are the means of the sandwich estimates
and in the second parentheses are the standard deviations of the simulated
parameter estimates.  The simulated responses are generated from the known
explanatory variable values in the full data set with the same set of missing values for
each simulated data set

As pointed out above, the ‘naive’ estimates which use just the completed data set are biased.

The increase in the coefficient of the 8-year Maths score is the opposite of what tends to occur

in the uncorrected errors in variables case, and this is evident from (18). The full missing data

estimates are very close to the full data set estimates and in all cases the latter lie within a 90%

confidence interval with respect to the distribution of parameter estimates over replications.



The estimated sampling standard errors of the estimates indicate that the sandwich estimators

perform reasonably well for the fixed parameters but tend somewhat to underestimate for the

random parameters.  Some further exploration of this with other data sets would be useful.

When data are missing, the sandwich estimators are based upon residuals which are more

stable than they would be if all the data were present, as they are based upon predicted values

and the estimators also make more use of model-based quantities than when there is no missing

data.  This appears to explain the relatively large sandwich standard error for the level-1

variance in analysis A.  It should be noted that the standard errors used here for the missing

data case do not take account of the variability in the prediction function and will tend to be

underestimates.  This bias can be estimated from the simulation replications and in our

examples is approximately 5%.

Table 2 gives the results for the model of analysis C in table 1, additionally omitting a random

25% of social class values.  We now assume multivariate Normality for Y X X, ,1 2 , and while

this is not strictly true since the latter is discrete, the results suggest that this is a reasonable

approximation.



Table 2.  Estimates from 100 simulations corresponding to analysis C of Table 1,
additionally omitting 25% of Social Class values.  Standard errors are sandwich
estimates.

Parameter Estimate (s.e.)

Fixed

Intercept 15.41

8-year Maths score 0.586 (0.034)

Manual Social class 1.317 (0.37)

Random

Level 2 variance 4.064 (1.18)

Level 1 variance 27.98 (1.21)

The results in Table 2 are similar to those in Table 1 and again the full data set parameter

values lie within a 90% confidence interval with respect to the distribution of parameter

estimates over replications.

Finally, in Table 3 we present the results of simulating conditionally missing (missing at

random) data.  The range of the response score is divided into three with approximately a third

of the distribution in each subrange.  For the lowest third the 8-year maths score is omitted at

random with a probability of 0.4: for the middle third with a probability of 0.25 and for the top

third with a probability of 0.15, giving an overall proportion missing an 8-year score of

approximately 0.25.  Such a pattern is not unreasonable in educational data where those who

reach low achievement levels are more likely to be missing when testing is carried out.  The

first column of Table 3 gives the results from 100 simulations where all cases with missing data



are excluded, illustrating clearly the biases, especially in the variance estimates, which result

from this informatively missing pattern.  The second column shows the results from applying

the full missing data procedure where the response is included in the prediction function.  As

pointed out earlier, we do not in general obtain fully consistent estimates in this case.

Nevertheless, as before, we do obtain estimates close to the full data set values and for which,

apart from the social class coefficient, the 90% confidence intervals include the population

values.



Table 3.  Estimates from 100 simulations corresponding to analysis C of Table 2,
with conditionally missing at random values of 8-year score (see text).  Analysis
A is the result of omitting cases with missing data and analysis B gives results
from the full missing data procedure.  Standard errors are sandwich estimates.

A B

Parameter Estimate (s.e.) Estimate (s.e.)

Fixed

Intercept 16.70 15.26

8-year Maths score 0.557 (0.037) 0.589 (0.036)

Manual Social class 1.209 (0.50) 1.137 (0.43)

Random

Level 2 variance 3.406 (1.14) 4.075 (1.06)

Level 1 variance 26.13 (1.50) 27.95 (1.26)

7.  Discussion

The ability to obtain model estimates with measurements missing at random allows us to make

efficient use of survey data where typically many measurements are missing.  The requirement

for random missingness is important, as with all procedures for dealing with missing data, but a

substantive discussion of this is outside the scope of this paper.  A review is given by Rubin

(1987).  From a design point of view, however, our procedures raise the interesting possibility

that surveys can be designed with data deliberately missing at random.  Such designs are

variously known as rotation or matrix designs.  The analysis of such designs, however,



typically has been restricted to the efficient estimation of means or of model parameters where

the ‘missingness’ has been confined to the response variables (see for example Goldstein and

James, 1983).  Using the methods of the present paper, we are able to analyse models where

there is any (random) missing pattern among response or explanatory variables.  This is useful,

for example, when we wish to restrict the length of a survey by rotating questions, or where

some data are available only on a subsample of individuals for reasons of cost or opportunity.

In our example of informatively missing data we obtain estimates which are much improved

over those based upon casewise deletion. One important application here is with longitudinal

data where, over time, subjects with atypical (for example small) values drop out of a study

(Diggle and Kenward, 1994).  By including all the data available and predicting for those

occasions where data are missing we may expect improved estimates.

Further exploration of data where such informatively missing mechanisms operate is currently

being planned.  Further work is also underway for the case where there are random coefficients

for variables with missing data and for the case of discrete data where probabilities are

extreme, using mixed response generalised linear models. It is also important to study models

with more complex covariance structures, with different sizes and ratios of variances. The

performance of the sandwich estimators also needs exploring and comparing with model based

estimators.

All the analyses were carried out using the multilevel software program MLn (Rasbash and

Woodhouse, 1995).
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