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1 Introduction

Almost all kinds of social data have a hierarchical or clustered structure.  For
example, studies of inheritance deal with a natural hierarchy where offspring are
grouped within families. Offspring from the same parents tend to be more alike in their
physical and mental characteristics than individuals chosen at random from the
population at large. For instance, children from the same family may all tend to be
small, perhaps because their parents are small or because of a common impoverished
environment or both.

Many designed experiments also create data hierarchies, for example evaluation studies
carried out in several randomly chosen centres or institutions. In formulating models
that take account of such hierarchies we are concerned only with the fact of such
hierarchies not their provenance. While the focus here is on applications in the social
sciences,  the techniques are applicable more generally.

I refer to a hierarchy as consisting of units grouped at different levels. Thus offspring
may be the level 1 units in a 2-level structure where the level 2 units are the families:
students may be the level 1 units clustered within schools that are the level 2 units.

The existence of  such data hierarchies is neither accidental nor ignorable. Individual
people differ  as do institutions. This is mirrored in all kinds of social activity where
differences among institutions are often a direct result of differences among people, for
example when students with similar motivations or aptitudes are grouped in highly
selective schools or colleges. In other cases, the groupings may arise for reasons less
strongly associated with the characteristics of individuals, such as the allocation of
young children to elementary schools, or the allocation of subjects to different
experimental groups. Nevertheless, once groupings are established, even if their
establishment is random, they will tend to become differentiated, and this implies that
the group and its members can both influence and be influenced by the composition of
the group. To ignore this relationship risks overlooking the importance of group
effects, and may also render  invalid many of the traditional statistical analysis
techniques used for studying data relationships.



A simple example will illustrate the importance of statistical validity. A well known and
influential study of primary (elementary) school children carried out in the 1970’s
(Bennett, 1976) claimed that children exposed to so called ’formal’ styles of teaching
reading exhibited more progress than those who were not. The data were analysed
using traditional multiple regression techniques which recognised only the individual
children as the units of analysis and ignored their groupings within teachers and into
classes. The results were statistically significant. Subsequently, Aitkin et al, (1981)
demonstrated that when the analysis accounted properly for the grouping of children
into classes, the significant differences disappeared and the progress of ’formally’ taught
children could not be shown to differ from the others.

This reanalysis is the first important example of a multilevel analysis of social science
data, using information from both ‘higher’ level units (teachers) and ‘lower’ level units
(children). In essence what was occurring here was that the children within any one
classroom, because they were taught together,  tended to be similar in their
performance. As a result they  provided rather less information  than would have been
the case if the same number of students  had been taught separately  by different
teachers. In other words, the basic unit for purposes of comparison should have been
the teacher not the student. The function of the students can be seen as providing, for
each teacher, an estimate of that teacher's effectiveness.  Increasing the number of
students per teacher would increase the precision of those estimates but not change the
number of teachers being compared. Beyond a certain point, simply increasing the
numbers of students in this way hardly improves things at all. On the other hand,
increasing the number of teachers to be compared, with the same or somewhat smaller
number of students per teacher, considerably improves the precision of the
comparisons.

To motivate and describe the multilevel approach we shall take our first example from
education. This will be followed by a discussion of other areas of application which
will also serve to introduce some of the more recent extensions to multilevel modelling
and to illustrate their potential for understanding social processes.

2 Educational data

Schooling systems present an obvious example of a hierarchical structure, with pupils
grouped or nested within schools, which themselves may be clustered within education
authorities or boards.

Consider the common example where test or examination results at the end of a period
of schooling are collected for each school for a randomly chosen sample of schools.
The researcher wants to know whether a particular kind of subject streaming practice
in some schools is associated with improved examination performance. She also has
good measures of the pupils' achievements when they started the period of schooling
so that she can control for this in the analysis. The traditional approach to the analysis
of these data would be to carry out a regression analysis, using performance score as
response,  to study the  relationship with streaming practice, adjusting for the initial
achievements.



An analysis that explicitly models the manner in which students are grouped within
schools has several advantages. First, it enables the data analyst to obtain statistically
efficient estimates of regression coefficients. Secondly, by using the clustering
information it provides correct standard errors, confidence intervals and significance
tests. These generally will be more ’conservative’ than the traditional ones which are
obtained simply by ignoring the presence of clustering - just as Bennett’s (1976)
previously statistically significant results became non-significant on reanalysis. Thirdly,
it makes it possible to explore the complexities of any variation among schools. For
example, we can study the extent to which schools differ for different kinds of
students, for example to see whether the variation between schools is greater for
initially high scoring students than for initially low scoring students (Goldstein et al,
1993). Fourthly, by allowing the use of covariates or predictors measured at any of the
levels of a hierarchy, it enables the researcher to explore  the extent to which such
variation between schools is accountable for by factors such as the organisational
practice of the school or the social backgrounds of the students. Finally,  there is often
an interest in the relative ranking of individual schools, based upon the performances of
their students after adjusting for intake characteristics and achievements. This can be
done most efficiently using a multilevel modelling approach. In practice, however, such
rankings are of limited use. They may identify institutions which have extremely high
or low rankings for further study, but they have too much imprecision (large
confidence intervals) for fine comparisons (see Goldstein and Spiegelhalter, 1996).

To fix the basic notion of a level and a unit, consider figures 1 and 2 based on
hypothetical relationships.

Figure 1 shows the exam score and intake achievement scores for five students in a
school, together with a simple regression line fitted to the data points. The residual
variation in the exam scores about this line, is the level 1 residual variation, since it
relates to level 1 units (students) within a sample level 2 unit (school). In figure 2 the
three lines are the simple regression lines for three schools, with the individual student
data points removed. These vary in both their slopes and their intercepts (the point at
which they would cross the exam axis), and this variation is level 2 variation. It is an
example of multiple or complex level 2 variation since both the intercept and slope
parameters vary.
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One procedure for incorporating school effects into a model is to fit a different
regression line for each school. In some circumstances, for example where we have
very few schools and moderately large numbers of students in each, this may be
efficient. It may also be appropriate if we are interested in making inferences about just
those schools. If, however, we regard these schools as a (random) sample from a
population of schools and we wish to make inferences about the variation between
schools in general, then a full multilevel approach is called for. In other words, just as
we regard students as having been sampled from a population of students and where
the sample is used to make inferences about that population rather than about each
individual student, so we regard the schools as instruments for making inferences about
the relevant population of schools. Moreover, if some of our schools have very few
students, fitting a separate model for each of these will not yield reliable estimates: we
can obtain more precision by regarding the schools as a sample from a population and
using the information available from the whole sample to make ‘smoothed’ estimates
for any one school.

A simple multilevel model

Consider a simple regression type model where an outcome or response, say a test
score, is related to an input measure, say a pretest score for a random sample of
students from a set of schools. Write

y b b x u eij ij j ij= + + +0 1
(1)

where the subscript i refers to the i-th student in the j-th school and uj is the ‘effect’ for
the j-th school, that is the additional contribution (positive or negative) that this school
makes to the prediction of the response score (yij ), given the pretest score (xij). The

‘fixed’ coefficients b0, b1  have the usual regression interpretations. The student or
‘level 1’ residual term  eij, as in the ordinary regression case, typically is assumed to

have a Normal distribution with a zero mean and a variance (σ e
2 ) which needs to be

estimated along with b0, b1.

The school effect terms uj can be treated in one of two ways. We can set out to
estimate each one separately, so that if there are, say 100 schools, we will have to
estimate a further 99 parameters. If we regard the schools as a random, however, then
we treat these terms in a similar fashion to the student level residuals and assume that
the uj come from a Normal distribution with a zero mean and a variance to be

estimated, say σ u
2 . Once we have made such an assumption we have a model in which

there are two random variables, one at each level of the data structure, and it is this
feature which makes it a multilevel statistical model. It also means that standard
statistical software packages, which typically assume only a single random variable,
cannot be used to fit these models. Special purpose software is available (see appendix)



and some of the standard packages such as SAS and STATA have begun to introduce
some multilevel modelling features.

In the remaining sections I will describe some of the applications where multilevel
models have found a useful application and also introduce some of the extensions of
the basic model (1). A more thorough technical treatment can be found in Goldstein
(1995). For a general reference and information on current developments see the
World Wide Web multilevel models site at http://www.ioe.ac.uk/multilevel/.

3 Sample survey methods

In a household survey, the first stage sampling unit will often be a well-defined
geographical unit. From those which are randomly chosen, further stages of random
selection are carried out until the final households are selected. Because of the
geographical clustering exhibited by measures such as political attitudes, special
procedures have been developed to produce valid statistical inferences, for example
when comparing mean values or fitting regression models (Skinner et al, 1989).

While such procedures usually have been regarded as necessary they have not generally
merited serious substantive interest. In other words, the population structure, insofar
as it is mirrored in the sampling design, is seen as a ’nuisance factor’. By contrast, the
multilevel modelling approach views the population structure as of potential interest in
itself, so that a sample designed to reflect that structure is not merely a matter of
saving costs as in traditional survey design, but can be used to collect and analyse data
about the higher level units in the population. The subsequent modelling can then
incorporate this information and obviate the need to carry out special adjustment
procedures, which are built into the analysis model directly.

4  Repeated measures data

A different example of hierarchically structured data occurs when the same individuals
or units are measured on more than one occasion. A common example occurs in
studies of human growth or, for example, in longitudinal studies of attitude change.
Here the occasions are clustered within individuals that represent the level 2 units with
measurement occasions the level 1 units. Such structures are typically strong
hierarchies because there is much more variation between individuals in general than
between occasions within individuals.

In a multilevel framework this involves, in the simplest case, each individual having
their own trend line with the intercept and slope coefficients varying between
individuals (level 2). Thus, equation (1) will be extended by allowing the coefficient of
xij, which now refers to time or age, to vary across individuals who are now the level 2
units. Thus at level 2 we have two random variables, the intercept and slope, with a
corresponding correlation (see Figure 2). This addition of a random coefficient  can be
extended so that any of the predictor variables can have coefficients varying at any
level of the hierarchy.



5  Discrete response data

Until now I have assumed implicitly that our response or dependent variable is
continuously distributed, for example an exam score. Many kinds of statistical
modelling, however, deal with categorised responses, in the simplest case with
proportions. Thus, we might be interested in whether or not a respondent votes for a
particular political party, or in an examination pass rate and how these vary from area
to area or school to school.

Such models, part of the class known as generalised linear models, have been available
for some time for single level data (McCullagh and Nelder, 1989),  with associated
software. By allowing for the modelling of higher level effects we obtain an analogous
set of multilevel generalised linear models to those for continuous responses.

6  Random cross classifications and multiple unit membership

Whilst the title of this article refers to multilevel, that is hierarchical models, there are
many examples where units are cross-classified as well as clustered. In geographical
research, the definition of an individual’s  geographical area is contingent upon the
context being considered. Thus, the relevant location unit for purposes of leisure may
not be the same as that surrounding the environment of work or schooling. We can
conceive formally of individuals belonging simultaneously to both types of  unit each of
which may  have an influence on a person’s life.

In most schooling systems, students move from elementary to secondary or high
school. We might expect that both the elementary and secondary schools attended will
influence a student’s achievements, behaviour and attitudes. Thus the level 2 units are
of two types, elementary school and secondary school, where each ’cell’ of their cross
classification contains some, or possibly no students. In this example, a third way of
classification could be the area or neighbourhood where the student lives.

A related structure occurs where for a single level 2 classification, level 1 units may
belong to more than one level 2 unit. An example from sociology concerns children’s'
and adults' friendship patterns where an individual may belong to several groups
simultaneously. The characteristics of the members  of each group will influence such
an individual, in relation to the individual's exposure to the group. Spatial data is
another example where an individual will be influenced by the characteristics of the
area in which they live and also by neighbouring areas. Thus the individual can be
considered to ‘belong’ simultaneously to several units with the contributions of each
unit being weighted in relation to its ‘distance’ from the individual.

7  Further topics

I have outlined only some of the more common models available in this article. Other
developments include the following topics.



• Multivariate multilevel models where, for example, several measures are made
simultaneously on each level 1 unit and these then vary and covary at higher levels.
A special case is where some of the responses are made at level 1 and some at
higher levels, for example measures of student and teacher attitudes. The analysis
can be carried out when some measurements are missing (randomly or by design)
and this leads to procedures for the efficient design and modelling of rotation or
matrix samples.

• Most measurements made in the social sciences contain some error component.
This may be due to observer error as when measuring the weight of an animal, or an
inherent result of being able to measure only a small sample of behaviour  as in
educational testing. It is well known that when variables in statistical models contain
relatively large components of such error the resulting statistical inferences can be
very misleading unless careful adjustments are made. The same is true in multilevel
models where errors can occur at several levels and a discussion and illustration is
given by Woodhouse et al (1996).

• In structural equation modelling, were individuals are grouped within hierarchies,
for all the same reasons discussed above, it is important to carry out such analyses
in a multilevel framework. For example, we may be interested in underlying
individual attitudes based upon a number of indicators. Data on such indicators may
be available over time and we can postulate a model whereby the underlying attitude
varies from individual to individual (level 2) and also varies randomly over time
within individuals (level 1). The model can then be elaborated further by studying
whether there is any systematic change over time and whether this varies across
individuals. (Muthen, 1994)

• Another extension, particularly important for data such as attitude and other scales
as well as educational data, is to allow for complex variation at level 1. For
example,  when analysing educational achievement, it is known that boys tend to
have a greater variance than girls and in general the level 1 variance may depend on
the value of any explanatory variable.

• Modelling time spent in various states or situations is important in a number of
areas. In industry the ’time to failure’ of components is a key factor in quality
control. In medicine the survival time is a fundamental measurement in studying
certain diseases. In economics the duration of employment periods is of great
interest. In education, researchers often study the time students spend on different
tasks or activities. Such ‘event history’ or ‘survival’ models need to be embedded
within a multilevel framework, for example where individuals (level 2 units)
repeatedly pass through various employment or unemployment periods or where
survival times of patients are measured in a number of different clinics (level 2
units).



8 A caveat

The application of multilevel modelling has already begun to yield new and important
insights in a number of areas and, as the software becomes more widely available, the
application of these techniques should become relatively straightforward, even routine.

All this is welcome, yet despite their usefulness, models for multilevel analysis cannot
be a panacea. In some circumstances, where there is little structural complexity, they
may be hardly necessary, and traditional single level models may suffice, both for
analysis and presentation. On the other hand multilevel analyses can bring extra
precision to attempts to understand causality, for example by making efficient use of
student achievement data in attempts to understand differences between schools.

These models are not, however, substitutes for well grounded substantive theories, nor
do they replace the need for careful thought about the purpose of any statistical
modelling. Furthermore, by introducing more complexity they can extend but not
necessarily simplify interpretations. Multilevel models are tools to be used with care
and understanding.

Appendix

In addition to some of the general purpose statistical packages, there are two major
software packages for multilevel modelling: HLM (Bryk and Raudenbush, 1992) and
MLn (Rasbash and Woodhouse, 1995). A review of these and other packages has been
carried out by Kreft et al (1994).
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