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ABSTRACT 

In the standard generalised linear model the residual variance is assumed to be constant or a 
well-defined function of the linear predictor. In many applications, however, this assumption 
may not hold and interest will often focus on modelling the residual variation as a function of 
further explanatory variables, such as gender or age. The article shows how to formulate such 
models and provides extensions to the multilevel case and to the modelling of a full covariance 
matrix.  
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Introduction 

Consider the simple linear regression model with normally distributed residuals 
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where 10  , ββ  are, respectively, the intercept and slope parameters and i indexes the observation. 
In standard applications such a model for a data set typically would be elaborated by adding 
further continuous or categorical explanatory variables and interactions until a suitable model 
describing the observed data is found. Procedures for such model exploration are discussed under 
the entry *. A common diagnostic procedure is to study whether the constant residual variance 
(homoscedasticity) assumption in (1) is satisfied. If not, a variety of actions have been suggested 
in the literature, most of them concerned with finding a suitable non-linear transformation of the 
response variable so that the homoscedasticity assumption is more closely approximated (see the 
entry *). In some cases, however, this may not be possible, and it will also in general change the 
nature of any regression relationship. An alternative is to attempt to model the heteroscedasticity 
explicitly, as a function of explanatory variables. For example, for many kinds of behavioural 
and social variables males have a larger variance than females and rather than attempting to find 
a transformation to equalise these variances, which would in this case be rather difficult, we 
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could fit a model that had separate variance parameters for each gender. This would have the 
advantage not only of a better fitting model, but also of providing information about variance 
differences that is potentially of interest in its own right.  

This article discusses general procedures for modelling the variance as a function of explanatory 
variables. It shows how efficient estimates can be obtained and indicates how to extend the case 
of linear models such as (1) to handle multilevel data (Goldstein, 2003). We will first describe, 
through a data example using a simple linear model, a model fitting separate gender variances 
and then discuss general procedures.  

An example data set of examination scores 

The data have been selected from a very much larger data set of examination results from six 
inner London Education Authorities (school boards). A key aim of the original analysis was to 
establish whether some schools were more ‘effective’ than others in promoting students’ learning 
and development, taking account of variations in the characteristics of students when they started 
Secondary school. For a full account of that analysis see Goldstein et al. (1993). 

The variables we shall be using are an approximately Normally distributed 16-year-old 
examination score as the response variable, with a standardized reading test score for the same 
pupils at age 11and gender as the explanatory variables.  

The means and variances for boys and girls are given in Table 1.  

Table 1.   Exam scores by gender.   
                    Girl          Boy         TOTAL 

      N          1623          2436        4059 

  Mean       -0.140       0.093       -0.000114 

 Variance    1.051         0.940           0.99 

We observe, as expected, that the variance for girls is lower than for the boys.  

We first fit a simple model which has a separate mean for boys and girls and which we write as 
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There is no intercept in this model since we have a dummy variable for both boys and girls. Note 
that these data in fact have a 2-level structure with significant variation between schools. 
Nevertheless, for illustrative purposes here we ignore that, but see Browne et al. (2002) for a full 
multilevel analysis of this data set.  

If we fit this model to the data using ordinary least squares (OLS) regression we obtain the 
following estimates 
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Table 2. OLS estimates from separate gender means model (2) 

Fixed Coefficient Standard error 

Boy -0.140 0.024 

Girl 0.093 0.032 

Random   

Residual variance 0.99 0.023 

-2 loglikelihood 11455.7  

Note that the fixed coefficient estimates are the same as the means in Table 1, so that in this 
simple case the estimates of the means do not depend on the homoscedasticity assumption. We 
refer to the explanatory variable coefficients as ‘fixed’ since they are associated with coefficients 
having a fixed underlying population value, and the residual variance is under the heading 
‘random’ since it is associated with the random part of the model (residual term).  

Modelling separate variances 

Now let us extend (2) to incorporate separate variances for boys and girls. We write 
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   (3) 

so that we have separate residuals, with their own variances for boys and girls. Fitting this 
model, using the software package MLwiN (Rasbash et al., 2000), we obtain the results in Table 
3. 
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Table 3. Estimates from separate gender means model (3) 

Fixed Coefficient Standard error 

Boy -0.140 0.025 

Girl 0.093 0.020 

Random   

Residual variance Boys 1.051 0.037 

Residual variance Girls 0.940 0.027 

-2 loglikelihood 11449.5  

We obtain, of course, the same values as in Table 1 since this model is just fitting a separate 
mean and variance for each gender1. Note that the difference in the –2 loglikelihood values is 6.2 
which judged against a chi squared distribution on 1 degree of freedom (because we are adding 
just 1 parameter to the model) is significant at approximately the 1% level. 

Now let us rewrite (3) in a form that will allow us to generalise to more complex variance 
functions. 
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Model (4) is equivalent to (3) with 
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where the * superscript refers to the parameters in (3). 

In (4), for convenience, we have used a standard notation for variances and the term 01eσ  is 
written as if it was a covariance term. We have written the residual variance in (4) as  

, which implies a covariance matrix with one of the 
variances equal to zero but a non-zero covariance. Such a formulation is not useful and the 
variance in (4) should be thought of simply as a reparameterisation of the residual variance as a 
function of gender. The notation in (4) in fact derives from that used in the general multilevel 
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1 Strictly speaking they will not be exactly identical because we have used maximum likelihood for our model 
estimates whereas Table 1 uses unbiased estimates for the variances; if REML model estimates are used then they 
will be identical. 
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case (Goldstein, 2003) and in the next section we shall move to a more straightforward notation 
that avoids any possible confusion with covariance matrices. 

Modelling the variance in general 

Suppose now that instead of gender the explanatory variable in (4) is continuous, for example the 
reading test score in our data set, which we will now denote by . We can now write down a 
slightly extended form of (4) as 
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This time we can allow the variance to be a quadratic function of the reading score; in the case of 
gender since there are really only two parameters (variances) so that one of the parameters in the 
variance function ( ) was redundant. If we fit (6) we obtain the results in Table 4. 2

1eσ

Table 4. Estimates from fitting reading score as explanatory variable 
with quadratic variance function. 

Fixed Coefficient Standard error 

Intercept ( 0β ) -0.002  

Reading ( 3β ) 0.596 0.013 

Random   

Intercept variance  2
0eσ 0.638 0.017 

Covariance 03eσ  0.002 0.007 

Reading variance  2
3eσ 0.010 0.011 

-2 loglikelihood 9759.6  

The deviance (-2 loglikelihood) for a model that assumes a simple residual variance is 9760.5 so 
that there is no evidence here that complex variation exists in terms of the reading score. This is 
also indicated by the standard errors for the random parameters, although care should be taken in 
interpreting these (and more elaborate Wald tests) using Normal theory since the distribution of 
variance estimates will often be far from Normal. 

Model (6) can be extended by introducing several explanatory variables with ‘random 
coefficients’ . Thus we could have a model where the variance is a function of gender (with 

 as the dummy variable for a girl) and reading score, namely 
hie

ix2
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We have here changed the notation so that the residual variance is modelled simply as a linear 
function of explanatory variables. 

Table 5. Estimates from fitting reading score and gender (girl = 1) as 
explanatory variables with linear variance function. 

Fixed Coefficient Standard error 

Intercept ( 0β ) -0.103  

Gender ( 2β ) 0.170 0.026 

Reading ( 3β ) 0.590 0.013 

Random   

Intercept ( 0α ) 0.665 0.023 

Gender ( 2α ) -0.038 0.030 

Reading ( 3α ) 0.006 0.014 

-2 loglikelihood 9715.3  

The addition of the gender term in the variance is associated only with a small reduction in 
deviance (1.6 with 1 degree of freedom), so that including the reading score as an explanatory 
variable in the model appears to remove the heterogeneous variation associated with gender. 
Before we come to such a conclusion, however, we look at a more elaborate model where we 
allow for the variance to depend on the interaction between gender and the reading score, namely 
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Table 6. Estimates from fitting reading score and gender (girl=1) as 
explanatory variables with linear variance function including 
interaction. 

Fixed Coefficient Standard error 

Intercept ( 0β ) -0.103  

Gender ( 2β ) 0.170 0.026 

Reading ( 3β ) 0.590 0.013 

Random   

Intercept ( 0α ) 0.661 0.023 

Gender ( 2α ) -0.034 0.030 

Reading ( 3α ) -0.040 0.022 

Interaction ( 4α ) 0.072 0.028 

-2 loglikelihood 9709.1  

Table 6 shows that the fixed effects are effectively unchanged after fitting the interaction term, 
but that the latter is significant with a reduction in deviance of 6.2 with 1 degree of freedom. The 
variance function for boys is given by 0 1040.0661. x−  and for girls by . In other 
words the residual variance decreases with increasing reading score for boys but increases for 
girls, and is the same for boys and girls at a reading score of about 0.5 standardised units. Thus, 
the original finding that boys have more variability than girls needs to be modified: initially low 
achieving boys (in terms of reading) have higher variance but the girls have higher variance if 
they are initially high achievers. It is interesting to note that if we fit an interaction term between 
reading and gender in the fixed part of the model we obtain a very small and non-significant 
coefficient whose inclusion does not affect the estimates for the remaining parameters. This term 
therefore, is omitted from table 6. 

1032.0627.0 x+

One potential difficulty with linear models for the variance is that they have no constraint that 
requires them to be positive and in some data sets the function may become negative within the 
range of the data or provide negative variance predictions that are unreasonable outside the 
range. An alternative formulation that avoids this difficulty is to formulate a nonlinear model, for 
example for the logarithm of the variance having the general form 

1   ,)]log[var( 0 ≡=∑ i
h

hihi xxe α         (9) 

We shall look at estimation algorithms suitable for either the linear or nonlinear formulations 
below. 
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Covariance modelling and multilevel structures 

Consider the repeated measures model where the response is, for example, a growth measure at 
successive occasions on a sample of individuals as a polynomial function of time (t) 
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where e  is the vector of  measurements for the j-th individual and i indexes the occasion. The 
residual covariance matrix between measurements at different occasions (

j

eΩ ) is non-diagonal 
since  the same individuals are measured at each occasion and typically there would be a 
relatively large between-individual variation. The covariance between the residuals, however, 
might be expected to vary as a function of their distances apart so that a simple model might be 
as follows 

)exp(),cov( 2
, see ejsttj ασ −=−        (11) 

which resolves to a first order autoregressive structure where the time intervals are equal. 

The standard formulation for a repeated measures model is as a 2-level structure where 
individual random effects are included to account for the covariance structure with correlated 
residuals. A simple such model with a random intercept  and random ‘slope’ u  can be 
written as follows 
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This model incorporates the standard assumption that the covariance matrix of the level 1 
residuals is diagonal, but we can allow it to have a more complex structure as in (11). In general 
we can fit complex variance and covariance structures to the level 1 residual terms to any 
multilevel model. Furthermore, we can fit such structures at any level of a data hierarchy. A 
general discussion can be found in Goldstein (2003, Chapter 3) and an application modelling the 
level 2 variance in a multilevel generalised linear model is given by Goldstein and Noden 
(2003); in the case of generalised linear models the level 1 variance is heterogeneous by virtue of 
its dependence on the linear part of the model through the (non-linear) link function. 

Estimation 

For normally distributed variables the likelihood equations can be solved, iteratively, in a variety 
of ways. Goldstein et al. (1994) describe an iterative generalised least squares procedure that will 
handle either linear models such as (7) or nonlinear ones such as (8) for both variances and 
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covariances. Bayesian estimation can be carried out readily using MCMC methods and a detailed 
comparison of likelihood and Bayesian estimation for models with complex variance structures 
is given in Browne et al., (2002). These authors also compare the fitting of the linear and 
loglinear models for the variance.    

Conclusions 

This article has shown how to specify and fit a model that expresses the residual variance in a 
linear model as a function of explanatory variables. These variables may or may not also enter 
the fixed, regression, part of the model. It indicates how this can be extended to the case of 
multilevel models and to the general modelling of a covariance matrix. The example chosen 
shows how such models can uncover differences between groups and according to the values of 
a continuous variable. The finding that an interaction exists in the model for the variance 
underlines the need to apply considerations of model adequacy and fit for the variance 
modelling. The relationships exposed by modelling the variance will often be of interest in their 
own right, as well as better specifying the model under consideration.  
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