

Multilevel Multiprocess Models for Partnership and Childbearing Event Histories

Fiona Steele, Constantinos Kallis, Harvey Goldstein and Heather Joshi

Institute of Education, University of London

Aims of Research

- Develop methodology for the analysis of correlated event histories
- Apply in an analysis of the link between partnership stability and childbearing
 - Examine effect of presence of children on separation and move from cohabitation to marriage, adjusting for correlation between partnership transitions and fertility

Methodology: Overview I

- Consider all partnerships for ages 16-42 using multilevel modelling
- Estimate simultaneously models for 3 types of partnership transition:
 - Marriage \rightarrow Separation
 - Cohabitation \rightarrow Separation; Cohabitation \rightarrow Marriage
- Estimate these transitions jointly with model for fertility to allow for potential endogeneity of fertility outcomes

Methodology: Overview II

- Use multilevel multistate discrete time event history model (Steele et al. 2004) for partnership transitions
 - 'States' are marriage and cohabitation
 - Competing risks from cohabiting state
- Estimate jointly with model for conceptions within partnerships using simultaneous equation (multiprocess) model (extending Lillard (1993) who considers only marriage)
- Multilevel data structure: repeated partnerships and births (level 1) within individuals (level 2)
- Estimation using MCMC in *MLwiN v.2*

Endogeneity of Prior Fertility Outcomes

- Interested in effect of presence of children on partnership transitions
- But children are prior outcomes of a potentially correlated process (fertility)
- There may be factors (some unobserved) which influence decisions about partnership transitions <u>and</u> childbearing
- If ignored, effects of interest will be biased

Multiprocess Model of Partnership Transitions and Fertility

Model for Partnership Transitions: Marital Separation

logit $h^{PM}(t) = \alpha_0^M D^{PM}(t) + \alpha_1^M F(t) + \alpha_2^M X^{PM}(t) + u^{PM}$

- $h^{PM}(t)$ Hazard of marital separation
- $D^{PM}(t)$ Partnership duration
- F(t) Prior fertility outcomes
- $X^{PM}(t)$ Covariates affecting marital separation
- u^{PM} Woman-specific random effect ~ Normal

Model for Partnership Transitions: Cohabitation to Separation (r=1) or Marriage (r=2)

Multilevel discrete-time competing risks model:

$$\log \left[\frac{h^{PC(r)}(t)}{h^{PC(0)}(t)} \right] = \alpha_0^{C(r)} D^{PC(r)}(t) + \alpha_1^{C(r)} F(t) + \alpha_2^{C(r)} X^{PC(r)}(t) + u^{PC(r)}$$

 $h^{PC(0)}(t)$ is hazard of "no transition", i.e. stay cohabiting

Estimate jointly with model for marital separation

Model for Fertility

Marriage

$$\operatorname{logit} h^{FM}(t) = \beta_0^M D^{FM}(t) + \beta_1^M F(t) + \beta_2^M X^{FM}(t) + u^{FM}(t) + \mu^{FM}(t) + \mu^{FM}$$

Cohabitation

logit
$$h^{FC}(t) = \beta_0^C D^{FC}(t) + \beta_1^C F(t) + \beta_2^C X^{FC}(t) + u^{FC}$$

Data

- 1958 British birth cohort (National Child Development Study)
 - Partnership (living together for >1 month) and birth histories collected retrospectively at ages 33 and 42. Linked to form history for age 16-42.
 - Covariates from childhood and adulthood.
- Analysis sample: n=5142 women with ≥1 partner by age 42; n=7032 partnerships and n=9137 "partnership episodes"

Selected Random Effect (Residual) Correlations Across Processes

• Separation from marriage and marital conception

r = -0.28* (*sig. at 5% level)

• Separation from cohabitation and cohabiting conception

r = 0.19

Cohabitation to marriage and cohabiting conception

$$r = 0.59^*$$

Effects of Fertility Variables on Logodds of Marital Separation

Age/Father ^a	Single Process	Multiprocess
Preschool/Curr ^b		
1	-0.52*	-0.51*
2+	-0.87*	-0.84*
Older/Curr		
1	-0.21*	-0.22*
2+	-0.53	-0.51*
Preschool/Prev	0.24	0.26
Older/Prev	0.20	0.24
Non consid	0.04*	0.04*
INON-CORESIO	0.91^	0.91^
Corr(u [™] ,u [™])	-	-0.28*

*95% interval estimate does not contain zero

^aFather is current or previous partner.

^bReference category for all vars is 0 children.

Effects of Fertility Variables on Log-odds of Marrying vs. Staying Cohabiting

Age/Father ^a	Single Process	Multiprocess
Preschool/Curr ^b	0.45	0.00*
1	-0.15	-0.23*
2+ Older/Curr	-0.07	-0.23
1	-0.36	-0.41*
2+	-0.32	-0.50
Preschool/Prev	-0.03	-0.04
Older/Prev	-0.04	-0.05
Non-coresid	-0.39*	-0.42*
Corr(u ^{PC(2)} ,u ^{FC})	-	0.59*

*95% interval estimate does not contain zero

^aFather is current or previous partner.

^bReference category for all vars is 0 children.

Conclusions

- Allowing for endogeneity of children conceived within marriage/cohabitation affects substantive conclusions regarding effects of children on move from cohabitation to marriage, but not on partnership dissolution
- Multiprocess approach also allows:
 - Estimation of correlation between unobservables within and across processes
 - Comparison of effects of covariates within and across processes