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Course Outline

• Discrete-time methods for modelling time to a 
single event

• Multilevel models for recurrent events and 
unobserved heterogeneity

• Modelling transitions between multiple states
• Modelling competing risks
• Multiprocess models for correlated histories



Discrete-time Methods for Modelling the 
Time to a Single Event
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What is Event History Analysis?

Methods for analysis of length of time until the occurrence of 
some event.  The dependent variable is the duration until 
event occurrence.

EHA also known as:

• Survival analysis (particularly in biostatistics and when 
event is not repeatable)
• Duration analysis
• Hazard modelling
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Examples of Applications

• Education – time to leaving full-time education (from end 
of compulsory education); time to exit from teaching 
profession

• Economics – duration of an episode of unemployment or 
employment

• Demography – time to first birth (from when?); time to 
first marriage; time to divorce

• Psychology – duration to response to some stimulus
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Special Features of Event History Data
• Durations are always positive and their 

distribution is often skewed

• Censoring – there are usually people who have 
not yet experienced the event when we observe 
them

• Time-varying covariates – the values of some 
covariates may change over time
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Censoring (1)

 

 

 

 

 
            Start          End 
         Observation period 
 
 

j =1 

j = 2 

j = 3 

j = 4 
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Censoring (2)

Arrowhead indicates time that event occurs. 
 
j = 1  start and end time known 
j = 2 end time outside observation period, i.e. right-censored 
j = 3 start time outside observation period, i.e. left-truncated 
j = 4 start and end time outside observation period 
 
 
Right-censoring is most common form of incomplete 
observation, and is straightforward to deal with in EHA. 
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Right-censoring: Non-informative 
Assumption

Excluding right-censored observations leads to bias and may 
drastically reduce sample size. In EHA we retain these 
observations and usually make the assumption that censoring is 
non-informative, i.e. event times are independent of censoring 
mechanism (like the ‘missing at random’ assumption).

Assume individuals are not selectively withdrawn from the sample
because they are more or less likely to experience an event.  May 
be questionable in experimental research, e.g. if more susceptible 
individuals were selectively withdrawn from a ‘treatment’ group.
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Event Times and Censoring Times
Denote the event time (also known as duration, failure, or 
survival time) by the random variable T. 
 
tj event time for individual j 
 
δj censoring indicator 
 =1 if uncensored (i.e. observed to have event) 
 =0 if censored 
 
But for right-censored case, we do not observe tj.  We only observe 
the time at which they were censored, cj. 
 
Our dependent variable is yj = min(tj, cj). 
 
Our observed data are (yj, δj). 
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The Discrete-time Approach

Event times measured in discrete intervals t=1, 2, 3, . . . (e.g. 
months, years).

Can think of event history as a series of independent 
success/failure trials.  In each interval t we observe a binary 
response indicating whether an event has occurred.
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Main Advantages of the Discrete-time 
Approach

• Events times often measured in discrete-time units, 
particularly when collected retrospectively

• Allows proportional hazards assumption to be tested 
straightforwardly.  Straightforward to allow for non-
proportional hazards.

• Analysis straightforward as we can use models for 
discrete response data – important for more complex 
data structures and processes
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Disadvantages of the Discrete-time 
Approach

• Data must first be restructured so that for each 
individual we have a sequence of observations, 
one for each time interval until event occurrence 
or censoring.

• If observation period is long relative to the width 
of the time intervals in which durations are 
measured, the dataset may become very large.
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Discrete-time Hazard Function
In EHA, interest is usually focused on the hazard 
function, h(t), and how it depends on covariates. 

 

The discrete-time hazard function h(t) is the probability of 

having at event during interval t, given no earlier 

occurrence: 

),|Pr()( tTtTth ≥==

where T is the event time.

Discrete-time hazard often denoted by ht
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Non-parametric Estimation of h(t)

r(t) is no. at ‘risk’ of experiencing event at start of interval t

d(t) is no. of events observed during interval t 

w(t) is no. of censored cases in interval t 

The life table (or actuarial estimator) of h(t) is

2/)()(
)()(ˆ
twtr

tdth
−

=

Note: assume censoring times are spread uniformly across interval 
t.  Some estimators ignore censored cases.
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Discrete-time Survivor Function

The survivor function, S(t), is the probability that an 

event has not occurred before time t: 

)Pr()( tTtS ≥=

The probability that an event occurs before time t is  

F(t) = Pr( T < t) = 1 – S(t).  F(t) is the cumulative density 
function. 
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Estimation of S(t)

Estimator of survivor function for interval t is

)]1(ˆ1[)1(ˆ
)]1(ˆ1[)]...2(ˆ1[)]1(ˆ1[)(ˆ

−−×−=

−−×−×−=

thtS

thhhtS

Note: Sometimes survivor function defined as S(t)=Pr(T>t).
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Restructuring Data for a Discrete-time 
Analysis: Individual-based File

E.g. records for 2 individuals 
 
INDIVIDUAL (j) DURATION (tj) CENSOR (δj) AGE (xj) 
1 5 0 20 
2 3 1 35 
 
 
CENSOR=1 if uncensored and 0 if censored. 
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Restructuring Data for a Discrete-time Analysis: 
Discrete-time (Person-period) File

j  t yj(t) xj  
1 1 0 20 
1 2 0 20 
1 3 0 20 
1 4 0 20 
1 5 0 20 
2 1 0 35 
2 2 0 35 
2 3 1 35 
 
yj(t) = 1 if event occurs to individual j at time t 
 = 0 if event has not occurred 
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The Discrete-time Logit Model (1)

The response variable for a discrete-time model is the binary 
indicator of event occurrence yj(t).

The hazard function may be written as

)0)1(|1)(Pr()( =−== tytyth jjj
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The Discrete-time Logit Model (2)

We can fit a logit regression model of the form:

The covariates xj(t) can be constant over time or time-varying.

α(t) is some function of time, called the logit of the baseline hazard 
function.  This needs to be specified.

)()(
)(1

)(
log)]([logit txt

th
th

th j
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Modelling the Time-dependency of the Hazard (1)

Changes in h(t) over time are captured by α(t).  This might be a 
linear or quadratic function.

tt 10)( ααα +=Linear:

Quadratic: 2
210)( ttt αααα ++=



Multilevel Discrete-Time Event History Analysis 23

Modelling the Time-dependency of the Hazard (2)

In the most flexible model, time is treated as a categorical 
variable with a category for each time interval, leading to a 
step function:

qqDDDt αααα +++= K2211)(

where D1, D2, . . ., Dq are dummies for time intervals t=1, 2, . . 
., q, and q is the maximum observed event time.  (Alternatively 
we can choose one time interval as the reference and fit an 
overall intercept term.)

If q is very large, categories can be grouped together –
piecewise constant hazard model.
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The Proportional Hazards Assumption

Model (*) assumes that the effects of covariates x(t) are 
constant over time. This is known as the proportional 
hazards assumption. (Strictly it is the odds that are assumed 
proportional as we are fitting a logit model.) 

We can relax this assumption by introducing interactions 
between x(t) and α(t).
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Grouping Time Intervals

When we move to more complex models, a potential 
problem with the discrete-time approach is that creating one 
record per discrete time unit may lead to a large dataset.

It may be possible to group time intervals, e.g. using
6-month rather than monthly intervals.  In doing so, we have
to assume that the hazard and values of covariates are 
constant within the grouped intervals.
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Analysing Grouped Time Intervals
If we have grouped time intervals, we need to allow for 
different lengths of exposure time within these intervals.

For example, for any 6-month interval, some individuals
will have the event or be censored after the first month while
others will be exposed for the full 6 months.  Denote by nj(t)
the exposure time for individual j in grouped interval t.

We then define a new response y*j(t)=yj(t)/ nj(t) and declare
nj(t) as a denominator for this proportion.

Note: intervals do not need to be the same width.
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Example of Grouped Time Intervals

Suppose an individual is observed to have an event during 
the 17th month, and we wish to group durations into 6-month 
intervals (t).

j t nj(t) yj(t) y*j(t)

1 1 6 0 0

1 2 6 0 0

1 3 5 1 0.2
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Example: Singer & Willett (1993)

Longitudinal data following career paths of 3,941 special 
educators in Michigan, hired between 1972 and 1978.

Event of interest is stopping teaching by 1985 (end of 
observation period).  So maximum duration is 12 years.  
Minimum censoring time is 7 years.
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Hazard and Survivor Functions
 
t r(t) d(t) w(t) h(t) S(t)
1 3941 456 0 0.116 1
2 3485 384 0 0.110 0.884
3 3101 359 0 0.116 0.787
4 2742 295 0 0.108 0.696
5 2447 218 0 0.089 0.621
6 2229 184 0 0.083 0.566
7 2045 123 280 0.065 0.519
8 1642 79 307 0.053 0.486
9 1256 53 255 0.047 0.460
10 948 35 265 0.043 0.438
11 648 16 241 0.030 0.419
12 391 5 386 0.025 0.407
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Examples of Interpretation

10.8% of teachers who were still teaching at the start of 
their 4th year, left during their 4th year [h(4)].

40.7% of teachers were still teaching at the start of their 
12th year [S(12)].
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Discrete-time Logit Model

The following results are from fitting a model of the form

logit[h(t)] = α(t) + β FEMALE

where α(t) = α1D1 + α2D2 + . . . + α12D12

D1, D2, . . ., D12 are dummies for years 1, 2, . . . 12
(no overall intercept)

FEMALE is a dummy for sex.
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Results from Fitting Logit Model

 Estimate (SE) 
D1 -2.41 (0.08) 
D2 -2.47 (0.08) 
D3 -2.41 (0.08) 
D4 -2.49 (0.09) 
D5 -2.70 (0.09) 
D6 -2.78 (0.10) 
D7 -3.12 (0.11) 
D8 -3.35 (0.13) 
D9 -3.48 (0.15) 
D10 -3.62 (0.18) 
D11 -4.03 (0.26) 
D12 -4.69 (0.45) 
FEMALE 0.44 (0.07) 
 



Unobserved Heterogeneity
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Introduction

Some individuals will be more at risk of experiencing an event than 
others, and it is unlikely that the reasons for this variability in the 
hazard will be fully captured by covariates.

The presence of unobserved (or unobservable) individual-specific 
risk factors leads to unobserved heterogeneity in the hazard.

Unobserved heterogeneity is also referred to as frailty, particularly 
in biostatistics (more ‘frail’ individuals have a higher mortality 
hazard).
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Consequences of Unobserved 
Heterogeneity

If there are individual-specific unobserved factors that affect the
hazard, the observed form of the hazard function at the aggregate
population level will tend to be different from those at the individual 
level.

Even if the hazards of individuals in a population are constant over
time the aggregate population hazard may be time-dependent,
typically decreasing.  This may be explained by a selection effect
operating on individuals.
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Selection Effect

If a population is heterogeneous in its susceptibility to 
experiencing an event, high risk individuals will tend to have the 
event first, leaving lower risk individuals in the population.  

Therefore as t increases the population is increasingly depleted of 
those individuals most likely to experience the event, leading to a 
decrease in the population hazard.

Because of this selection, we may see a decrease in the 
population hazard even if individual hazards are constant (or even 
increasing).
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Impact of Unobserved Heterogeneity on 
Parameter Estimates

If unobserved heterogeneity is incorrectly ignored:

(i) A positive duration dependence will be underestimated, 
while a negative duration dependence will be 
overestimated.

(ii) The magnitude of regression coefficients will be 
underestimated.  BUT note that estimates from a frailty 
model have a different interpretation – see later.
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Allowing for Unobserved Heterogeneity in a 
Discrete-Time Model

We can introduce a random effect which represents individual-
specific unobservables:

jjj utxtth ++= )()()]([logit βα

Usually assume ),0(~ 2
uj Nu σ

represents unobserved heterogeneity or frailty.2
uσ
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Interpretation of Coefficients from a Frailty 
Model

Suppose we have a continuous covariate x, with coefficient β.

In model without frailty, exp(β) is an odds ratio.  It compares the 
odds of an event for two randomly selected individuals with x-values 
1 unit apart (and the same values for other covariates in the model). 
exp(β) is the population averaged effect of x.

In model with frailty, exp(β) is an odds ratio only when the random 
effect is held constant, i.e. if we are comparing two hypothetical 
individuals with the same random effect value. exp(β) is the 
individual-specific effect of x.



Multilevel Discrete-Time Event History Analysis 40

Example

Time to first partnership (Practical Exercise 1)

2 dichotomous covariates:

FEMALE

FULLTIME (in full-time education), time-varying

Consider models with and without frailty.
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Results from Fitting Models Without (1) and 
With (2) Unobserved Heterogeneity

Model 1
Est.   (SE)

Model 2
Est.   (SE)

t 0.04 (0.01) 0.11 (0.04)

FEMALE 0.43 (0.10) 0.59 (0.15)

FULLTIME -1.51 (0.18) -1.56 (0.19)

σu - 0.72 (0.22)

LR test statistic for comparison of models = 6.09 on 1 d.f.
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Time to First Partnership: Interpretation of 
Coefficients from the Frailty Model

For a given individual, the odds of entering a partnership at age t
when in full-time education are exp(-1.56)=0.21 times the odds 
when not in full-time education.  This interpretation is useful 
because FULLTIME is time-varying within an individual.

For 2 individuals with the same random effect value, the odds 
are exp(0.59)=1.8 times higher for a woman than for a man.  This
interpretation is less useful.  We could, however, obtain a
population average effect of sex as follows.
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Obtaining Population Average Effects from a 
Frailty Model: Predicted Hazards

Compute h(t) for x(t)=x*(t): 
 

])(*)(exp[1
])(*)(exp[)(*
utxt

utxtth
+++

++
=

βα
βα

 

What value for u?  u=0, i.e. the mean?

Because of nonlinearity of logistic transformation, h*(t) at u=0 is 
not equal to the mean h*(t).  It is actually the median.  

Solutions: integrate out u, or simulate distribution of u. 
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Predicted Hazards by Simulation

(i)  Generate M values for random effect u from )ˆ,0( 2
uN σ : u(1)

 , u(2) . . ., u(M) 

(ii)  For m = 1,…,M compute, for x(t) = x*(t): 

 
])(*)(exp[1

])(*)(exp[
)(

)(

)(*
)(

m

m
m utxt

utxt
th

+++

++
=

βα
βα

(iii)  Mean (population average) hazard: 
 

 

∑=
m
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M
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Population Average Odds Ratio from 
Predicted Hazards

Suppose interested in obtaining the odds ratio for females 
relative to males. 
 

 Mean of M hazards (from simulation) 
 

FEMALE (x=x*) 
 

)(*
1 th  

1 

)(*
0 th  

0 
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Estimation of Model with Unobserved 
Heterogeneity

• Estimate using any software for random effects 
(multilevel) logit models.  Options include:
– SAS (proc nlmixed), Stata (xtlogit), aML (all use 

numerical quadrature)
– MLwiN (quasi-likelihood, MCMC)
– WinBUGS (MCMC)
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Markov Chain Monte Carlo (MCMC) Estimation (1)

• Bayesian formulation that puts priors on parameters and 
generates a (correlated) chain of sample draws from the 
posterior distribution of the parameters.

• WinBUGS is the most flexible software – MLwiN tailored 
to multilevel data and uses ‘good’ starting values.

• Consider the 2-level variance components model for 
Normal response data:

2 2
0 1 ,     ~ (0, ),     ~ (0, )ij ij ij j ij u ij eu e uy x N Neβ β σ σ= + + +



Multilevel Discrete-Time Event History Analysis 48

MCMC Estimation (2)

The basic idea is that we require the joint (posterior) 
distribution of the parameters  given the data y and 
(independent) prior distributions for each of the parameters.

A ‘prior’ represents information about a parameter before 
we collect data. For example a ‘diffuse’ prior is

~ (0,10000) ( , )N Uβ ≅ −∞ ∞

This is then combined with the data (via the likelihood for the 
data) to produce a ‘posterior’ distribution for the parameter.

MCMC works by drawing a random sample of sets of parameter 
values, say 5,000 sets, and basing inference on these ‘chains’.
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MCMC Estimation (3)

At iteration n we want to sample from the posterior 
distribution of each parameter in turn. If we can write down 
an analytical expression for the posterior – as is the case 
for Normal models - then Gibbs sampling is available and 
efficient. 

Otherwise we need an alternative – MLwiN uses 
Metropolis-Hastings sampling, e.g. for binary response 
models.
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MCMC Estimation (4)

The MCMC procedure for a 2-level binary response model 
is as follows:

1. Choose starting values (quasi-likelihood)

2. Sample a new set of fixed effects given the current 
values of all the other parameters and the data

3. Sample a new set of random effects given other 
parameters and data

4. Sample new random effect variance
….etc.



Modelling Recurrent Events
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Examples of Recurrent Events

Many types of event can occur more than once to an 
individual. Define an episode as the time between the start 
of the ‘risk’ period and the occurrence of an event or 
censoring.

Examples

Employment episode: duration from starting a new job to 
leaving that job.

Marriage episode: duration of a marriage.
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Problem with Analysing Recurrent Events

We cannot assume that the durations of episodes from the 
same individual are independent.

There may be unobserved individual-specific factors (i.e. 
constant across episodes) which affect the hazard of an event 
for all episodes.  Presence of such unobservables, and failure 
to account for them in the model, will lead to correlation
between the durations of episodes from the same individual.  
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Hierarchical Data Structure

Recurrent events lead to a two-level hierarchical structure.

Level 2: Individuals

Level 1: Episodes
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Simple Two-level Model for Recurrent Events (1)

jijij utxtth ++= )()()]([logit βα

)(thij is hazard of event in time interval t during episode i 
of individual j

)(txij are covariates which might be time-varying or defined at
the episode or individual level

ju random effect representing unobserved characteristics
of individual j – shared ‘frailty’ (common to all episodes)

Assume ),0(~ 2
uj Nu σ
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Simple Two-level Model for Recurrent Events (2)

• The model for recurrent events is essentially the same as 
the model for unobserved heterogeneity, and is therefore 
estimated in exactly the same way.

• Recurrent events allow better identification of the random 
effect variance.

• The expansion of data to discrete-time format is carried 
out for each episode within an individual.
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Episode-specific Effects

We can allow the duration and covariate effects to vary 
between episodes.  E.g. we might expect factors affecting 
the timing of the first event to differ from those affecting 
timing of subsequent events (or the same factors to have 
different effects).

Include dummy variable(s) for order of the event and interact 
with t and covariates. 
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Example

Repeated birth intervals for Hutterite women, a natural fertility 
(no contraceptive use) population in North America.

Data on 944 birth intervals from 159 women.  Interval is 
duration between a birth and conception of next child.

Only closed intervals (i.e. ending in a conception before the 
survey).  Long open intervals may be due to primary or 
secondary sterility.  Therefore there is no censoring.
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Duration and Covariates

Duration of a birth interval is represented by a categorical 
variable (in a piecewise constant hazards model):

MONTH Month of exposure to risk of conception
[<6, 6-11, 12-23, 24-35, 36+ (ref.)]

Consider one covariate:

AGE Age at start of birth interval (years)
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Results
 
 Coeff. (SE) 
Const 
 

 0.38 (0.39) 

MONTH   
  <6 -0.96 (0.30) 
  6-11 -0.21 (0.30) 
  12-23  0.12 (0.30) 
  24-35 
 

-0.24 (0.36) 

AGE -0.07 (0.01) 
   

2
uσ   0.31 (0.06) 
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Random Coefficient Models

The model we have considered so far assumes that unobserved 
heterogeneity is constant.  Using multilevel modelling terminology, 
this model is a random intercept model.  The form of the hazard is 
assumed the same across individuals, but is shifted up or down by 
an amount uj on the logit scale.  The duration and covariate effects 
are assumed to be the same for each individual.

To test these assumptions, we can consider random coefficient
models (called random slope models for continuous covariates with 
linear effects).  Note, however, that there may be insufficient 
information to estimate random coefficients if the number of 
individuals with recurrent events is small.
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Random Coefficient for AGE
Suppose we suspect that the effect of AGE varies across women.  We 
explore this using a random coefficient model:

jijjij uAGEtth 0)()]([logit ++= βα

where jj u1+= ββ

Assume

0110

2
11

2
00

),Cov(

),0(~),,0(~

ujj

ujuj

uu

NuNu

σ

σσ

=

Also written as jijjijij uAGEuAGEtth 10)()]([logit +++= βα
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Graphical Representation of a Random 
Coefficient Model

 
 
 

 
 
 
 
 
 

Slope β of “average” line 

xij 

Logit[h(t)] Slope β+ u11 for ind. 1 

Slope β+ u12 for ind. 2 

Slope β+ u13 for ind. 3

For any time interval t:
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Unobserved Heterogeneity as a Function 
of AGE

In the model with a random coefficient for AGE, the 
unobserved heterogeneity between women is:

22
101

2
0

2
1100

10

2

)(),(2)(

)Var(

ijuijuu

ijjijjjj

jijj

AGEAGE

AGEuVarAGEuuCovuVar

uAGEu

σσσ ++=

++=

+

i.e. a quadratic function in AGE.
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Results from Random Coefficient Model 
(AGE centred around mean)

 
 Coeff. (SE) 
Const -1.55 (0.30) 
MONTH   
  <6 -0.99 (0.31) 
  6-11 -0.21 (0.30) 
  12-23  0.14 (0.30) 
  24-35 -0.21 (0.37) 
AGE -0.07 (0.01) 
   

2
0uσ   0.29 (0.85) 

01uσ  -0.007 (0.005) 
2
1uσ   0.001 (0.001) 
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Testing Significance of Random 
Coefficient

2 additional parameters introduced to random intercept model:

2
1uσ and 01uσ

Test the null hypothesis that 0: 01
2
10 == uuH σσ

The (approximate) Wald test statistic is 2.84 on 2 d.f.

So fail to reject null and conclude that the effect of AGE is 
constant across women.
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Interpretation of Random Coefficient for AGE

In practice, we would revert to the random intercept model after
finding little evidence of a random coefficient.  But, for illustration, we 
consider the interpretation of the random coefficient model.

The between-woman variance in the logit-hazard of conception (after 
accounting for duration effects) is:

2

10

001.0014.029.0

)Var(

ijij

jijj

AGEAGE

uAGEu

+−=

+

We can plot the between-woman variance as a function of AGE.
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Between-woman Unobserved Heterogeneity as a 
Function of AGE



Multiple States
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States in Event Histories

In the models we have considered so far, there is a single 
event of interest.  We model the duration to this event from 
the point at which an individual becomes “at risk”.  We can 
think of this as the duration spent in the same state.

E.g. in a study of marital dissolution we model the duration 
in the marriage state.

In a study of birth intervals we model the duration spent 
in the non-pregnant state (up to age 45 say).
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Multiple States

Usually individuals will move in and out of different states 
over time, and we wish to model these transitions.

Examples

Partnership states: marriage, cohabitation, single 
(unpartnered)

Employment states: employed, unemployed, out of the 
labour market
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Possible Partnership Transitions
(S=single, M=marriage, C=cohabitation)

S

C

M

S

S

C

M

C

M

S

C

M

C

M

S

etc.

Note that censoring can 
occur in any state, at which 
point no further transitions 
are observed.
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Example: Transitions Between 
Partnership States

For simplicity, group marriage and cohabitation into one
‘partnership’ state (P), and model transitions between this 
state and the ‘single’ state (S).

Need to estimate two equations: (1) duration spent in P,
where event is moving to S; (2) duration spent in S, where
event is moving to P.
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Model for Transitions Between 
Partnership and Single States 

(Adapted from Goldstein et al. 2004, Understanding Statistics)

P
j

P
ij

PPP
ij utxtth ++= )()()]([logit βα

Transitions from P to S (may be multiple transitions per individual):

Transitions from S to P (actually fit separate eq. for first S-P transition):

S
j

S
ij

SSS
ij utxtth ++= )()()]([logit βα

Allow correlation between P
ju and .S

ju
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Why Allow Correlation Between Random 
Effects Across States?

There may be time-invariant individual-specific 
unobservables that affect each type of transition.

E.g. individuals with a strong desire to be in a partnership 
might have a low hazard of moving from P to S, and a high 
hazard of moving from S to P, i.e. a tendency towards long 
partnerships and short periods in the single state.

This would lead to a negative random effect correlation.
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Random Effect Covariance Matrix
(from Goldstein et al. 2004)

P S

P 0.462 (0.061)

S -0.313 (0.095)
-0.524

0.773 (0.141)

Source: National Child Development Study (NCDS), age 16-33
Note: Standard errors in parentheses; correlation estimate.
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Interpretation of Random Effect 
Correlation (Men only)

The estimated correlation of –0.524 implies that there is a 
moderate negative association between the duration in a 
partnership and the duration spent without a partner.

We can, tentatively, classify men as long partnership/
short-time single or short partnership/ long-time single.
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Estimation of a Multiple State Model

• Specify a single equation model with dummy 
variables for each state.  Interact dummies with 
duration and covariates to obtain state-specific 
duration and covariate effects.

• Allow coefficient of each dummy to vary and 
covary randomly across individuals.
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Data Structure I

Start with an episode-based file, e.g.

j i Stateij tij δij Ageij

1 1 S 3 1 16

1 2 P 2 0 19

Notes: (1) t in years; (2) δij =1 if uncensored, 0 if censored;
(3) age, in years, at start of episode.
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Data Structure II

Convert to discrete-time format:

t yij(t) Sij Pij Sij*Ageij Pij*Ageij

1 0 1 0 16 0
2 0 1 0 16 0
3 1 1 0 16 0
1 0 0 1 0 19
2 0 0 1 0 19

Sij dummy for Single, Pij dummy for Partnership.
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Model Specification
• Specify a 2-level logit model. Include Sij, Pij, Sij*Ageij and 

Pij*Ageij as explanatory variables.  Also include 
interactions between Pij, Sij and some function of duration 
t.

• Coefficients of Sij and Sij*Ageij are intercept and effect of 
age on log-odds of forming a partnership. Coefficients of 
Pij and Pij*Ageij are intercept and effect of age on log-odds 
of dissolving a partnership.

• Allow coefficient of Sij and Pij to vary randomly across 
individuals.



Competing Risks
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Examples
There will often be more than one way of (or reason for) 
exiting a particular state; we call these “competing risks”. 
We assume these are mutually exclusive.

Event Competing risks

Death Different causes

End of employment spell Sacked, redundancy, switch 
job, out of labour market

Partnership formation Marriage or cohabitation

Contraceptive discontinuation Different reasons, e.g. failure, 
side effects
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Cause-Specific Hazard Functions

The hazard is defined as for single types of event, but now 
we have one for each competing risk.

Suppose there are R competing risks, then the hazard of 
event type r at time t is:

h(r)(t) = Pr(event of type r at time t | T ≥ t)

The hazard that no event of any type occurs at t
(given ‘survival’ to t) is:

∑
=

−=
R

r

r thth
1

)()0( )(1)(
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Calculation of the Survivor Function

The probability of survival is the probability that no event
of any type occurs before time t:

)1()2()1()( )0()0()0( −×××= thhhtS K
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Modelling Approaches I
In discrete time, we can distinguish between two main 
modelling approaches:

(1) Model the cause-specific hazards simultaneously
using a multinomial logistic model

E.g. for partnership formation, estimate 2 contrasts:
marriage vs. single (“no event”), cohabitation vs. single.
(The remaining contrast, marriage vs. cohabitation, may
be estimated from the other two.)

c.f. Multiple decrement life table
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Modelling Approaches II
(2) Model each competing risk separately, treating all 

other events as censored

E.g. for partnership formation, estimate 2 separate 
binary logistic models: 

(i) Model hazard of marriage, treating transitions to
cohabitation as censored;

(ii) Model hazard of cohabitation, treating transitions to 
marriage as censored.

c.f. Associated single decrement life table
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Modelling Approaches III
Rates estimated using approach (2) represent the underlying

(or theoretical) risk of a particular event in the absence of all
other risks.

E.g. “What would be the risk of dying from cancer if there
were no other causes of death?”

Useful for comparing rates across time or populations.

E.g. Comparison of death rates due to cancer in 1900 and 
1990, adjusting for changes in life expectancy.
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Data Structure for Multinomial Model

For each discrete time interval t define a multinomial 
response, yij(t), indicating occurrence and type of event.

The response categories are 0 (“no event”), 1, 2, . . ., R.

Note: Further data restructuring needed to fit model in
MLwiN – see practical.
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The Multinomial Logit Model
(Multilevel Version for Recurrent Episodes)

)()()()(
)0(

)(

)()(
)(
)(

log r
j

r
ij

rr

ij

r
ij utxt

th
th

++=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
βα

R equations contrasting event type r with “no event”.

where ),,,( )()2()1( R
jjj uuu K ~ multivariate normal, variance Ωu

Random effects are correlated to allow for shared 
unobserved risk factors.
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Estimation of Cause-Specific Hazards

∑
=

+++

++
= R

r

rrrr

rrrr
r

utxt

utxtth

1

)()()()(

)()()()(
)(

))(ˆ)(ˆexp(1

))(ˆ)(ˆexp()(ˆ
βα

βα

Usual formula for calculating predicted probabilities
from a multinomial logit model:

Need to substitute some value for )(ru

Could simulate values from )ˆ,0( uMVN Ω
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Competing Risks: Example

• Data from NCDS, women age 16-42

• Outcomes of cohabitation
– Separation (r=1)
– Marriage to cohabiting partner (r=2)
– Staying cohabiting, i.e. “no event” (r=0)

• α(r)(t) cubic polynomials
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Years to Partnership Transitions:
Quartiles

25% 50% 75%

Cohab →
Separation

3.5 9.1 -

Cohab →
Marriage

1.3 2.9 10.3

Marriage →
Separation

13.8 - -
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Cohabitation Outcomes: Selected Results
 Separation (r=1) Marriage (r=2)
 Est. (SE) Est. (SE) 
Age at start (ref=20-24)     
  <20  0.09 (0.14) -0.02 (0.09) 
  25-29 -0.42 (0.10) -0.05 (0.06) 
  30-34 -0.41 (0.12) -0.22 (0.08) 
  35+ -0.67 (0.16) -0.35 (0.11) 
Post-16 educ.     
  1  0.21 (0.12) -0.01 (0.08) 
  2  0.12 (0.14)  0.10 (0.08) 
  3-5   0.11 (0.13) -0.04 (0.08) 
  6+  0.12 (0.15) -0.11 (0.10) 

)Var( )(r
ju   0.59 (0.14)  0.23 (0.05) 

),Cov( )2()1(
jj uu   0.08 

Corr=0.22 
(0.06)   
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Competing Risks and Multiple States: 
Example

• Jointly model outcomes of marital and cohabiting 
partnerships:
– Marriage  → separation
– Cohabitation → separation
– Cohabitation → marriage

• Multiple states: marriage and cohabitation
• Competing risks: 2 outcomes of cohabitation
• Model can be extended to consider all possible 

partnership transitions.  Here we omit partnership 
formation (single → marriage, single → cohabitation)
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Random Effects Covariance Matrix
 

 Mar→  
Sep 

Cohab→  
Sep 

Cohab→  
Mar 

Mar→  Sep 1.15* 
 

  

Cohab→Sep 0.46* 
corr=0.53

0.65*  

Cohab→Mar 0.12 
 

0.08 
 

0.28* 

 
*95% interval estimate does not contain zero 
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Interpretation of Random Effect 
Correlation

Correlation between random effects for dissolution of 
marriage and cohabitation is estimated as 0.53.

Women with a high (low) risk of separation from marriage 
tend also to have a high (low) risk of separation from 
cohabitation.



Multilevel Discrete-Time Event History Analysis 100

Competing Risks and Multiple States: 
Another Example

(Steele et al. 2004, Statistical Modelling)

• Contraceptive use dynamics in Indonesia.  Define episode 
of use as a continuous period of using the same method 
of contraception.
– 2 states: use and nonuse
– An episode of use can end in 2 ways: a transition to nonuse

(discontinuation), or a switch to another method (a transition within 
the same state). 

• Estimate 3 equations jointly: binary logit model for 
transition from nonuse to use, and multinomial logit model 
for transitions from use
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Selected Results: Fixed Effects

Use→nonuse
Est. (SE)

Use →other method
Est. (SE)

Nonuse →use
Est. (SE)

Urban (ref.=rural) 0.13 (0.04) 0.06 (0.05) 0.26 (0.04)

SES (ref.=low)

Medium -0.12 (0.05) 0.35 (0.07) 0.24 (0.05)

High -0.20 (0.05) 0.29 (0.08) 0.45 (0.05)
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Random Effect Correlations from Two 
Different Models

Use→nonuse Use →other method Nonuse →use

Use→nonuse 1

Use →other method 0.020
0.011

1

Nonuse →use -0.783*
-0.052

0.165*
0.095

1

Model 1: Duration effects only
Model 2: Duration + covariate effects

*Correlation significantly different from zero at 5% level
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Random Effect Correlations: Interpretation

• In “duration effects only” model, there is a large negative 
correlation between random effects for nonuse → use and 
use → nonuse
– Long durations of use associated with short durations of nonuse

• This is due to short episodes of postnatal nonuse followed 
by long episodes of use (to space or limit future births)
– Correlation is effectively zero when we control for whether episode 

of nonuse follows a live birth (one of the covariates)
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Independence of Irrelevant Alternatives 
(IIA)

• One potential problem of the multinomial logit model is the 
IIA assumption.

• The IIA assumption is that the hazard of one event relative 
to “no event” is independent of the hazards of each of the 
other events relative to “no event”.

• This may be unreasonable if some events can be 
regarded as similar.
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Example: Partnership Formation (Marriage 
vs. Cohabitation)

• Under IIA, assume the hazard of cohabitation vs. staying single 
is uncorrelated with the hazard of marriage vs. staying single. 

• E.g. If there is something unobserved (not in X’s) that made 
marriage unfeasible, we assume those who would have 
married distribute themselves between cohabitation and single 
in the same proportions as those who originally chose not to 
marry.  

• But as marriage and cohabitation are similar in some respects, 
we might expect those who are precluded from marriage to be 
more likely to cohabit rather than remain single (Hill, Axinn and 
Thornton, 1993, Sociological Methodology).
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IIA: Solutions

• The random effects multinomial logit offers some 
protection against the IIA assumption.  The correlation 
between the cause-specific random effects allows for 
similarity between alternatives due to time-invariant
individual characteristics.  It does not control for 
unmeasured factors that vary across episodes (e.g. 
whether respondent or partner is already married).

• Another approach is to use a multinomial probit model 
(e.g. using aML).  Or nested logit model (Hill et al. 1993).



Multiple Processes
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Endogeneity (1)
Consider a 2-level random effects model for a Normal response:

ijjijij euy ++= βx

One assumption of the model is that the predictors xij are
uncorrelated with the residuals (uj,eij), i.e. we assume that xij
are exogenous. 

This may too strong an assumption for some predictors, 
particularly “choice” variables.
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Endogeneity (2)

E.g. suppose yij is birth weight of child i of woman j, and zij
(an element of xij) is number of antenatal visits during pregnancy.

Some of the factors that influence birth weight may also influence
the uptake of antenatal care; these may be characteristics of the
particular pregnancy (e.g. woman’s health during pregnancy) or of 
the woman (health-related behaviour).  Some of these may be 
unobserved.

i.e. y and z are to some extent jointly determined.  z is said to be
endogenous.

This will lead to correlation between z and u and/or e, and a biased
estimate of the coefficient of z.
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Simultaneous Equations Model

One approach to allow for endogeneity is to model y and z jointly.

Estimate two equations:

)()()()(

)()()()(

z
ij

z
j

z
ij

z
ij

y
ij

y
jij

y
ij

y
ij

euz

euzy

++=

+++=

xβ

xβ γ

where we allow residuals at the same level to be correlated 
across equations:

eyz
z

ij
y

ijuyz
z

j
y

j eeuu σσ == ),cov(;),cov( )()()()(

Because of these correlations, the equations must be estimated
simultaneously (or in 2-stages in single-level case).
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Simultaneous Equations Model: 
Identification

In order to identify the model, some exclusion restrictions must
be placed on the covariates and/or random effect covariances:

• If covariances at both levels are permitted to be nonzero
)( z

ijx must contain at least one variable not contained in )( y
ijx

• If one covariance is assumed to equal zero, covariate 
exclusions are not strictly necessary for identification. 
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Simultaneous Equations Model: 
Estimation

Treat (yij, zij) as a bivariate response, and estimate multilevel
bivariate response model (e.g. in MLwiN, Chapter 14 in manual).

Model can be extended to handle categorical responses (e.g. 
bivariate probit model) or mixture of Normal and categorical 
responses.

MLwiN can handle mixture of binary and Normal, and binary and
multinomial (if zero covariance assumed at lowest level).  aML can 
handle other mixtures.



Multilevel Discrete-Time Event History Analysis 113

Simultaneous Equations Model for Correlated 
Event Histories (1)

Suppose y is a duration variable and z is either also a duration 
or the outcome of an event history.

E.g. (Lillard 1993; Lillard and Waite, 1993)

yij is duration of marriage i of person j

zij(t) is number of children from marriage i at time t (outcome of birth
history)

The unobserved individual characteristics that affect hazard of 
marital separation may be correlated with those that affect hazard
of birth (or conception) during marriage.
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Simultaneous Equations Model for 
Correlated Event Histories (2)

)(thP
ij Hazard of marital separation at time t

)(thF
ij Hazard of conception (leading to live birth) at time t

P – partnership process
F – fertility process

Model hazards jointly using simultaneous (multiprocess) 
event history model.
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Discrete-time Model

F
j

F
ij

FFF
ij

P
jij
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ij

PPP
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utxtth
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Discrete-time Model: Estimation

For each time interval t define a bivariate response ))(),(( tyty F
ij

P
ij

)(ty P
ij indicates partnership transition (e.g. marital separation)

- could be binary or multinomial (competing risks)

)(ty F
ij indicates fertility transition (conception)

Fit multilevel bivariate response model to allow for correlation 
between random effects.
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Example: Lillard (1993)
Effect of Children from Current Marriage on Log-Hazard 

of Marital Separation

No. children 
(ref.=none)

1 -0.56 (0.10) -0.33 (0.11)

2+ -0.01 (0.05) 0.27 (0.07)

0=uPFσ freeuPFσ

)20.0(75.0),r(r̂Co −=F
j

P
j uu
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Multiprocess Models with Multiple States 
and Competing Risks

Suppose we consider outcomes of cohabiting partnerships
together with marital separation. This leads to multiple 
states (marriage & cohabitation) and competing risks 
(separation & marriage).

Partnership transition indicator will be binary for marriage
and multinomial for cohabitation.  Include state dummies and
their interactions with covariates as before.

Add binary fertility response, leading to bivariate data with 
mixture of binary and multinomial responses.
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Example: Steele et al. (2005)
Estimate 5 hazards equations for following transitions:

- marriage  → separation
- cohabitation → separation
- cohabitation → marriage
- conception (leading to live birth) in marriage
- conception in cohabitation

Each equation includes a woman-specific random effect.

Random effects correlated across equations.
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Random Effects Covariance Matrix: 
Partnership Transitions

 
 Mar→ Sep Cohab→Sep Cohab→Mar 
Mar→ Sep 1.16* 

 
  

Cohab→Sep 0.49* 
r=0.52 

0.77*  

Cohab→Mar 0.13 
r=0.21 

0.11 
r=0.23 

0.32* 

 
*95% interval estimate does not contain zero 
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Random Effects Covariance Matrix: 
Fertility

 
 Marriage Cohabitation 
Marriage  0.05* 

 
 

Cohabitation -0.01 
r=-0.06 

0.22* 

 
*95% interval estimate does not contain zero 
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Selected Random Effect Correlations 
Across Processes

• Separation from marriage and cohabiting conception
r = 0.42* (*sig. at 5% level)

• Separation from cohabitation and cohabiting conception
r =  0.32*

• Cohabitation to marriage and cohabiting conception
r =  0.30*
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Effect of Selected Fertility Variables on Log-odds of 
Separation from Cohabitation

 
Age/Fathera Single Process 

 
Multiprocess 

 

Preschool/Currb   
   1 -0.24*  -0.29* 
   2+ -0.75*  -0.88* 
Older/Curr   
   1 -0.03  -0.06 
   2+  0.24   0.14 
   
Preschool/Prev -0.33 -0.34 
Older/Prev -0.01 -0.02 
   
Non-coresid -0.02  -0.02 
Corr(uPC(1),uFC) -   0.32* 
 
*95% interval estimate does not contain zero 
aFather is current or previous partner. 
bReference category for all vars is 0 children. 
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Other Examples of Potentially Correlated 
Event Histories

• Partnership formation and childbearing

• Partnership formation and education

• Partnership formation/outcomes and employment

• Childbearing and employment

• Housing and employment
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