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Abstract 

In this paper we highlight some of the more pressing conceptual questions in family research 

that require additional methodological development.  We then outline a basic structure for 

multilevel models for family data to address each of the issues raised.  Models for testing 

genetic hypotheses, gene-environment interactions, environmental hypotheses of “shared” 

and “non-shared” effects, and family systems are outlined and demonstrated.  Empirical 

examples are provided for two data sets involving 1-4 children per family. We then discuss a 

list of useful model extensions and compare our method to existing work that has used 

multilevel models to estimate genetic effects. The algorithm used (described in full in an 

appendix) can handle household and extended family data of any size and complexity and can 

handle a wide array of analytic questions in family research. 
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Multilevel Models for Family Data 

Multilevel models, also known as variance component models, random effects models 

and hierarchical linear models (Bryke and Raudenbush, 2001; Goldstein, 2003; Longford, 

1993; Snijders & Bosker, 1998), have seen rapid growth and development over the last 

twenty years and are now becoming a standard part of the quantitative social scientist’s 

toolkit.  Multilevel models provide a flexible regression modelling framework for handling 

data sampled from clustered population structures, such as students within classes within 

schools, patients within hospitals, repeated measurements within individuals, or children 

within families.  Ignoring the multilevel structure of the data can lead to incorrect inferences 

because the standard errors of regression coefficients are underestimated.  Moreover, if the 

higher-level units such as neighborhood or family are left out of the model, then we can not 

explore potentially important questions about their effects, which we refer to as “context” 

(Earls et al., 1999; Jenkins et al., 2003).  It is because most social data have a strong 

hierarchical structure that multilevel models are becoming so widely used in social science.  

One natural application of multilevel models is family studies, where children are 

nested within families (Jenkins et al., 2002; O’Connor et al., 2001; Raudenbush et al., 1995; 

Snijders, 1995). This paper extends this work by demonstrating a method for including 

genetic effects in multilevel models for family data. 

Researchers studying family “effects” have struggled to address a number of 

conceptual issues in an integrated analytic paradigm.  We outline what these conceptual 

issues are before providing empirical examples. 

Testing Genetic hypotheses in family data 

One of the most persuasive alternative explanations for family environmental effects 

derives from behavioural genetics.  Put simply, the rationale is that, because family members 
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share both genes and family environment, studies showing an association between some 

aspect of the family environment and child well-being might actually be mediated by shared 

genetic factors.  Thus, the well-replicated finding that, say, parental warmth/support or 

marital conflict predicts child behavior/emotional problems does not necessarily imply 

environmental mediation.  In fact, many studies have shown that features of the family 

environment and, more impressively, associations between family environment and child 

outcomes are at least partly mediated by genetics (Ge et al., 1996; O’Connor et al., 2000; 

Plomin, 1994).  The need to consider hypotheses testing both genetic and environmental 

mediation is now appreciated in the practice of family research.  Nevertheless, conclusions 

from these studies remain controversial, primarily because of criticisms about the 

methodology and data analytic approach employed (see, Collins et al., 2000; 2002). 

Studies using behavioural genetic methods have been criticized for failing to include 

measured family environments (family level explanatory variables) and instead inferring 

environmental effects from a lack of genetic effects, extended family designs (e.g., parents as 

well as twins), and gene-environment interplay, most notably gene-environment interactions.  

Although programs that can address these issues are available (e.g., Neale, 2000), empirical 

examples that counter these criticisms (e.g., Caspi et al., 2000; D’Onofrio et al., 2004) are not 

typical.  Thus, most behavioural genetic reports are still vulnerable to these criticisms.  We 

suggest that a multilevel model framework provides an accessible and broad model to test 

hypotheses of genetic and environmental influence and is sensitive to detecting the complex 

pattern of gene-environment interplay, notably gene-environment interactions. 

Testing systems and context effects in the family 

A second major challenge to family research concerns the detection of “family level” 

processes or family context effects.  That is, despite the recognized importance of importing 
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family systems notions into research, few family studies actually assess family level 

differences and sources of variation.  Instead, family researchers most commonly assess 

dyadic relationships within the family – parent-child, marital and sibling, their overlap with 

each other and child outcomes.  Analyses at the dyadic, within-family level do not necessarily 

indicate what, if anything, makes families different from one another.  The totality of the 

family system can not be captured by analysing a set of overlapping dyads separately. In such 

analyses which include only one dyad per family dyad and family are confounded and no 

separation can be made between dyad and family components of variation.  Furthermore, 

failure to consider family-level factors, such as whether family stresses such as parental 

conflict or divorce have shared or common effects on children in the family may be partly 

reinforced by behavioral genetics findings suggesting that similarity between siblings may be 

more attributable to shared genes than “shared” environment.   However, the general 

conclusion that “shared environment” has a minimal role may be premature because few 

studies directly test the hypothesis that there are shared, common or family-wide effects of 

family stresses. 

Few solutions for studying family systems and family-level effects have been 

proposed.  One approach that has been suggested as a possible analytic solution is the social 

relations model developed by Kenny and colleagues (Cook, 2002; Snijder & Kenny, 1999).  

When data on relationships within the family are collected on 3 or more family members, the 

social relations model is able to model variation in relationship quality that is attributable to 

each member, each dyad, and the family.  What is significant about the approach for family 

theory is that it is possible to examine how and why families differ from one another, not just 

how relationships in different families differ from one another.   We elaborate on this 
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approach below, and show how multilevel model analytic framework can be adapted to 

incorporate genetics within the social relations model approach. 

Family data present a number of methodological challenges that are familiar to 

researchers in other areas.  Accordingly, family data provide a useful laboratory for 

examining a wide range of data analytic questions, with relevance the extends behind testing 

hypotheses about “family effects.”  

Method and Results 

A basic multilevel model for family data 

If we have data on children within families, we can write the basic multilevel model as 
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ijy is the response for the i’th child in the j’th family, 0β is the overall mean, is a departure 

for the j’th family so that 
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ju+0β gives the mean for the j’th family, is the departure of the 

i’th individual from the j’th families mean. In the vocabulary of family and behavioural 

genetics research,   can be described as  a “shared environmental” effect, between-family 

variation, or clustering of measurements at the family level; can be described as a “non-

shared environmental” effect, within-family variation, or child-specific effect. 
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This model is like a one-way ANOVA except that the are now random effects as 

opposed to fixed effects. Usually, we are not interested in making statements about particular 

families we have sampled.  Rather, we wish to make more general statements about the 
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population of families from which we have drawn our sample. In an ANOVA model we fit 

one dummy variable to each family. Unfortunately, this means any statements we make about 

families apply only to the families we have sampled and we loose the generality of inference 

of the multilevel model. The multilevel model is also more parsimonious because we do not 

fit a  for every family, but instead we estimate  directly. Thus, if we have a 1000 

families we have reduced the number of parameters needed to model the between family 

variation from 1000 to 1.  

ju 2
uσ

Once we have estimated the family level variance, a natural avenue of exploration is 

to add family level variables in order to explain the between family variation. This is not 

possible in ANOVA models, since having fitted one parameter to each family there are no 

degrees of freedom remaining to fit further family level explanatory variables. The parsimony 

of multilevel models allows family level explanatory variables to be fitted as well as directly 

estimating the residual between family variance. Another key advantage of multilevel models 

is that they allow complex specifications for the covariance structure of the model. This final 

point is utilised when we incorporate genetic effects in multilevel models. 

Extending the basic model to include genetic effects 

Let us now look at the variance and covariance structure generated by model 1 and 

see how this changes when we include genetic effects. The variance of the response 

measurements is 
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These three independence assumptions are: random effects for two different families are 

uncorrelated, family and child random effects are uncorrelated, and random effects for two 

different children are uncorrelated. The covariance of two children (i1 and i2 ) in the same 

family is  

2),cov(),cov(
2121 ujijjijjiji eueuyy σ=++=  

We can elaborate (1) to incorporate genetic effects as follows: 
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Where  is a genetic effect for the i’th child in the j’th family. That is, a child’s genetic 

make up contributes to that child’s response by an amount ; the genetic effects are another 

type of child level residual. For two individuals, ( ) 
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genetic covariance of two individuals in the same family, , is clearly not zero 

since there is a non-zero probability that they share the same genes.  Behavioural genetics 

research makes a number of assumptions in their models.  These assumptions are not without 

criticism, but we merely carry over to the present context.  Specifically, these assumptions 

are: additive genetic variation, random mating, an evolutionary stable population, no gene 

environment correlations and independent transmission of genes from parents to offspring.  

The covariance between two individuals in the same family is 
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Where  is the relationship coefficient between two individuals and equals 

(0,0.125,0.25,0.5,1) for unrelated individuals, cousins, half-sibs, full sibs/DZ twins, and MZ 

twins, respectively. Model (2) therefore gives us a direct estimate of the additive genetic 
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variation ( ), the shared environmental variation (  ), and the non-shared environmental 

variation( ). The model is estimated using an adaptation of the Iterative Generalised Least 

Squares algorithm described in Goldstein and Rasbash (1993), for details of the adaptation 

see the appendix. 

2
gσ 2

uσ

2
eσ

 Applying the model.  We now illustrate the models (1) and (2) using data collected on 

Nonshared Environment and Adolescent Development project (NEAD; Reiss et al., 1994, 

2000). This data set has 277 full sib pairs in nuclear and stepfamilies, 109 half-sib pairs, 130 

unrelated pairs, 93 DZ twins and 99 MZ twins aged between 10 and 18 years.  Note that 

although this data set contains two children per family the method will handle any number of 

children per family, as we show below. We start by analysing depression scores in the 

children. Depression scores are formed from a composite of three measures: the Child 

Depression Inventory (Kovacs, 1983), the depression subscale from the Behaviour Problems 

Index (BPI; Zill, 1985), and the depression subscale from the Behaviour Events Inventory 

(BEI; Patterson, 1982).  Genetic analyses of child depression in NEAD have been written up 

elsewhere (O’Connor et al., 1998).  In the current paper, we use the child depression data to 

illustrate the multilevel model analytic approach.  The results are shown in Table 1a. 
The total variance in the two models is effectively the same 0.284 in model 1 and 

0.296 in model 2. In model 2, which includes genetic effects, 80% of the shared 

environmental variation and 65% of the non-shared environmental variation are re-assigned 

to the genetic variance. After genetic effects have been added the shared environmental 

variation (0.018) compared to its standard error (0.017) appears to be non-significant. 

Caution is needed here because this assumes that this variance is Normally distributed, which 

is only asymptotically true. With over 700 families it is probably reasonable to assume a 

Normal distribution for the variances. However, a better test is to remove the parameter from 
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the model and observe the change in deviance. Under this test, the change in deviance is 

1.5(p = 0.22) and which confirms that after genetic effects have been added the shared 

environmental variance is no longer significant.  In other words, there is a clustering of 

variance in child depression at the family level, and the reason for this is essentially entirely 

accounted for by genetic resemblance of siblings. 

Including covariates in the model 

We can elaborate the model including covariates for child age, gender, paternal and 

maternal negativity and whether the child is a member of a stepfamily. The parental 

negativity measures were formed from composites of the following measures: Parent 

Discipline Behavior (Hetherington & Clingempeel, 1992), punitive and yielding to coercion 

subscales; Parent-Child Disagreements (Hetherington & Clingempeel, 1992), conflict 

subscale and Conflict Tactics Scale (Strauss, 1979), symbolic aggression subscale. 

The results of the elaborated model are shown in Table 1b. From the fixed effects we 

see that depression scores increase with child age, paternal and maternal negativity; girls and 

children in stepfamilies also have higher depression scores. Adding the covariates reduces the 

shared environment and genetic variances, but does not reduce the non-shared environment 

variance. The reduction in the genetic variance (of 29% from 0.209 to  0.148) occurs when 

maternal and paternal negativity are added to the model.   

Pike et al. (1996) analyse the same data using a series of genetically calibrated 

bivariate structural equations models. Two of the models they consider are bivariate 

structural equations models for maternal negativity and depression and paternal negativity 

and depression. In each of these two models they find 15% of the genetic variance in 

depression is due to a shared genetic component with parental negativity.  When we add 

paternal and maternal negativity to our model as fixed effects we are sweeping out any 
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common genetic effects shared by parental negativity and adolescent depression. We are also 

taking account of any environmental correlations whereby sibling pairs of greater relatedness 

experience more similar parental treatment. Both these factors will reduce the remaining 

additive genetic variance in the model.   

The conceptual issue raised by this approach is whether the interest is in modelling 

genetic variance/heritability of the “raw” variable, modelling genetic variance/heritability 

after first accounting for key explanatory variables, or modelling the effects of explanatory 

variables together with genetic variance.  Much of the behavioural genetics research adopts 

the first approach.  More recent behavioural genetic research has focused on the latter 

approach.  We therefore extend the multilevel framework to look at a particular example of 

how multilevel approaches may be used to test hypotheses about the interplay between 

environmental and genetic processes, gene-environment interactions. 

Complex variation and gene environment interactions 

In a multilevel model we simultaneously estimate a model for the mean, specified by 

the β  coefficients (also known as fixed effects) and a model for the variance. Currently our 

model for the variance partitions the variance into three sources: shared environment, non-

shared environment and genetics. The model for the variance can be further elaborated to 

allow each of the three sources of variation to be modelled as functions of explanatory 

variables, where the variables may be measured at any level (child or family) and be 

continuous or categorical. That is 
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We now elaborate the model to allow all three variances to be a function of paternal 

negativity.  
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The results are presented in model 4 in Table 1c. 

Including the three extra parameters reduces the deviance by 40.5. This reduction is 

almost entirely driven by the gene environment interaction term ; removing the  and 

 terms from the model 4 results in a change in only 1.1 in the deviance. The significant 

coefficient constitutes a gene-environment interaction because it implies the genetic 

variance changes as a function of paternal negativity. 
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Further exploration of the three variances as functions of explanatory variables 

revealed one other strong interaction, between the genetic variance and gender; the results are 

given in Table 1c model 5. In model 5 we drop the non-significant  and  and 

introduce a term modelling the genetic variance as a function of gender. That is: 
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The girl explanatory variable only has j subscript because it is actually a sibling-pair 

level variable, since in this study only same sex pairs were chosen. This obviously limits the 

generalisability of the results. However, the main intention of this paper is to demonstrate 

how multilevel models can be used to fit genetic effects. 

Comparing model 3 with model 5, which differ only in two terms modelling the 

genetic variance as functions of paternal negativity and gender, we see a change in the 

deviance of 50.5, providing evidence for these gene-environment interactions. Figure 1 shows 

how the genetic variance changes as a function of paternal negativity and gender. 

The response variable exhibited some minor skewness. We ran the models on a range 

of transformations of the response variable (normal scores, log transform and square root 

transform) to explore the sensitivity of the findings to the response scale. The same pattern of 

coefficients (in terms of direction and relative size) was found across all response scales. 

However, the gene-environment interactions were significant on the raw scale and the square 

root transform, but not on Normal scores and log transforms. Therefore, the findings of these 

gene-environment interactions must be suggestive rather than definitive. 

Analysing a data set with a range of family sizes 

The NEAD data set contains only sibling pairs of the same gender and over samples 

of twin, half sib and unrelated sibling pairs. This provides a powerful design for detecting 

genetic effects but limits the generalisability of the findings. We can also apply these models 

to large-scale population studies of children within families. One of the advantages of using 

multilevel models to estimate genetic effects is the models extend naturally to any number of 

children per family. To illustrate the application of these models to a family population study 

we use the first wave of the National Longitudinal Study of Canadian Youth (NLSCY, 1995).  

The NLSCY contains 9333 families and 13953 children. After removing any siblings whose 
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biological relationship could not be determined from the data we are left with 9243 families 

and 13,579 children. There are 5555, 3084, 560 and 44 families with 1, 2, 3 and 4 children 

recorded per family, respectively. Note that this is not always the actual number of children 

per family as data collection was capped at a maximum of 4 children per family in order to 

reduce the response burden for families.  Genetic relationship between siblings was derived 

from information about a) which biological parent/s the child lived with and b) a comparison 

of the date of the commencement of the relationship between the child’s biological parents 

for each child in a sibling dyad.  The zygosity of twins was not available.  We therefore had 

to omit one twin from each twin pair. As the genetic relationship of the remaining twin to 

his/her sibling(s) was known it was possible to include these children in the analysis. Finally, 

we have 29, 202 and 4797 unrelated, half-sib and full-sib dyads respectively. 

We analyse as a response the maternal ratings of children’s aggression. This included 

six items scored on a 1-3 scale from never or not true to often or very true. The same stem 

was used for all questions: “How often would you say that [name]” with the following items: 

gets into many fights; when mad at someone says bad things behind the other’s back;  

physically attacks people; threatens people; is cruel, bullies or is mean to others; kicks, bites, 

hits other children? The internal consistency for the scale was good: � = .77. This response 

variable is skewed. However, an analysis using Normal scores, raw scores, square root and 

log transformations all produced the same patterns in terms of relative size and statistical 

significance for the coefficients.  We present results for the raw data.  

Covariates were included in model and were all based on the report of the Person 

Most Knowledgeable (PMK) about the child (in over 90% of the cases this was the mother). 

Child age was measured in years. Socioeconomic status was assessed by a composite score 

based on the education and occupation of the PMK and spouse as well as the household 
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income. Maternal depression was based on a shortened version (12 items) of the CES-D 

(Radloff, 1977). The 12 items, rated on a 4-point scale, included the core symptoms of 

depressive symptomatology, e.g., poor concentration, depressed mood, poor appetite, 

sleeplessness (internal consistency was α= .82).  Exposure to violence in the home was based 

on a 4-point scale with the question rated as follows: “How often does (name) see adults or 

teenagers in your house physically fighting, hitting or otherwise trying to hurt others?” 

Parental negativity towards child is based on 7 items rated on a 5-point scale: gets annoyed 

with child for disobedience, proportion of praise when talks to child (reversed scored), 

proportion of disapproval when talks to the child, gets angry when punishing child, type of 

punishment depends on mood, has problems managing the child in general, has to discipline 

repeatedly for the same thing. Internal consistency of this parental negativity scale was � = 

.71.   

Table 2 model 1 shows the results decomposing the variation into shared and non-

shared components; model 2 introduces genetic effects and model 3 adds covariates.  Models 

2 and 3 both estimate a heritability of 53% , however all three variance components are 

reduced when covariates are included.  Increasing child age and family socio-economic status 

(SES) are associated with decreasing child aggression; boys are more aggressive than girls; 

maternal depression, being exposed to violence between adults and parental negativity 

directed towards the child are all associated with increasing child aggression.  All these 

findings accord with what has been shown in other reports. 

Other useful model extensions 

Multilevel modelling technology can already estimate a wide range of statistical 

models for handling a wide range of substantive problems.  One advantage of embedding 
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genetic effects in a multilevel modelling framework is that all these extensions become 

available. A few of these are mentioned now. 

Extension to population structures involving multiple levels of crossing and nesting.  

Often we have many classifications which induce clustering in our response variable. These 

classifications may be nested or crossed. For example, in addition to children within families, 

we may have many raters who are making the measurements or administering questionnaires 

to the individuals in the study. It can be important to estimate the between rater variance in 

addition to the shared environment, non-shared environment and genetic variances as failure 

to take between rater variability into account might result in biased estimates of the other 

variances. If raters assess entire families then we have a multilevel structure with children 

nested within families nested within raters. If children in the same family are assessed by 

different raters and if raters assess many families, then children are contained within a cross 

classification of family by rater. Whether we have a nested or a crossed structure, we can still 

readily estimate shared environment, non-shared environment, genetic and between rater 

components of variation. Indeed any of those variance components can be modelled as a 

function of any explanatory variables measured at any level. 

Unfortunately, in family studies the raters or observers are often not identified in the 

data sets provided for analysis. The usual procedure is to train raters to an “aceptable” level 

of reliability; where 70% reliability is typically regarded as  acceptable. However this level of 

reliability means that 30% of the variablity of the response being analysed is attributable to 

the rater and depending on how raters are assigned between and within familes different 

biases in the division between shared, non-shared and genetic components variance 

components arise. These relative size of these variance components  is of crucial substantive 

interest so the problem is potentially a serious one. By using a multilevel model where raters 
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are simply included as another random classification these biasses are removed from the 

analysis.Of course the identity of the raters must be provided to the data analyst to make this 

solution possible and we strongly recommend that this information is provided in the future.   

Another example of cross-classification arises in the analysis of directed relationship 

data on dyads within families; this model and the inclusion of genetics effects is described in 

section 8.  We may have further important levels of clustering in our study for example, 

geographical areas, schools or hospitals depending on the nature of the study. Again 

multilevel models allow the variance attributable to these clusters to be modelled. 

Repeated measures data.  Here we have measurement occasions (i) nested within 

individuals (j) nested within families (k). We can write a multilevel growth curve model with 

genetic effects as 

ijkjkijkjkjkk

kjkijkijkijk

egtuuv
famtypemaletty

+++++

++++=

100

43
2

210 ...βββββ

 

We can include occasion, individual or family level predictors in the model. Coefficients of 

growth can vary across individuals and families. The above model allows the linear predictor 

for growth (rate of growth) to vary across families and individuals. Individuals are now at 

level 2 in the model so genetic effects are now defined at level 2. 

Multivariate response models.  We can fit multivariate response models within a 

multilevel framework. We have multiple responses available in the NEAD data set we have 

been analysing. So we give an example of a simple multilevel, multivariate model with 

genetic effects here.  We use as responses depression and antisocial scores (a more extensive 

report of these data are written up elsewhere in O’Connor et al., 1998).  The basic 

multivariate model can be written as 
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where antisocial behaviour is response 1 and depression is response 2. This simply estimates 

a mean for each response and their covariance matrix: var(antis) = 0.297(0.01), 

var(depression) = 0.276, cov(antis, depr) = 0.113. This model (Goldstein, 2003) handles 

missing responses, whereas conventional multivariate response estimation procedures require 

incomplete cases to be dropped.  Also, we can add covariates and add further structure to the 

covariance matrix, for example shared environment and genetic random effects :  
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(6) 

The results for model shown in equation 6 are given in Table 3.  The genetic correlation 

between antisocial behavior and depression is 38.0
182.0*180.0

069.0)(
12 ==gρ .  Each of these 

variance/covariance parameters can also be modelled in terms of child or family level 

variables. 

Inclusion of arbitrarily complex intergenerational pedigree information using a 

parsimonious model formulation.  The estimation procedure used in this paper, and described 

in an appendix, subsumes all the biological relationship information in an arbitrary complex 



   Multilevel Models     19 

  

pedigree, potentially running over generations into a single design matrix. This allows the 

additive genetic variation to be estimated as a single parameter. Of course, if we want to 

include gene-environment interactions and dominance effects, further design matrices are 

required and the framework laid out in the appendix readily extends to handle these model 

elaborations. 

Analysis of dyadic directional relationship data 

Often in psychological studies relationship data take the form of directional 

measurements on dyads. For example, the amount of aggression from individual A to 

individual B. The same structures occur in social network analysis and Snijders and Kenny 

(1999) develop a cross-clasified multilevel model for handling these structures.  In this 

section we apply the Snijders and Kenny model to directional scores from the NEAD data set 

and extend the model to handle genetic effects. 

 Each family contained two parents and two children.  Families were videotaped 

interacting in 10-minute problem-solving sessions.  Observers analysed the videotapes using 

a reliable observational rating system (described fully in O’Connor et al., 1995).  Observers 

rated each individual’s behavior (e.g., mother behavior to older child and older child behavior 

to mother).  Here we analyse composite negativity measures based on observer codings of 

anger and coercion. 

 For each family we have 12 directed measurement of negativity: c1→c2, c1→m, 

c1→f, c2→c1, c2→m, c2→f, m→c1, m→c2, m→f, f→c1, f→c2, f→m (where c1 = child1 

[older child], c2 = child2[younger child], m = mother and f=father). Snijders and Kenny 

describe behaviour from actors to partners. For example, in the directed score m→c1, mother 

is the actor and child 1 is the partner. The data can be clasified according to actor and partner, 

it can also be classified according to dyad: 
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c1→c2, c2→c1:dyad 1;     c1→m, m→c1:dyad 2;    c1→f, f→c1:dyad 3; 

c2→m, m→c2 :dyad 4;     c2→f, f→c2    :dyad 5;    m→f, f→m:dyad 6;    

The relationships between the measurements and the actor, partner, dyad, and family 

classifications are shown in Figure 2. The negativity measurements lie within a three-way 

classification of actor by partner by dyad; this cross-classification is nested within family.  

Data are clustered by partner, actor, dyad and family.  All of these classifications are 

potentially important from a technical (failure to model them leads to incorrect standard 

errors for fixed effects) and a substantive point of view. We can write down the multilevel 

model for this structure as: 

kjpa
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                             (7) 

where j indexes actor, k indexes partner, l indexes dyad and m indexes family and i is the 

measurement level. (j,k,l) denotes cross-classification of classifications j,k and l. We also 

have random effects for family m (fm), actor j in family m ( ajm), partner k in family m( pkm), 

dyad l in family m and a residual  random effect ei(j,k,l)m. Note that the model estimates a 

covariance between actor and partner effects for the same individual, however the covariance 

between actor effect and partner effect is set to zero where the actor and partner are different 

individuals.  

For a family with 3 members this gives rise to the covariance structure shown in 

figure 3. The NEAD data has families with 4 members and therefore a 12 by 12 covariance 

matrix for the relational scores, for the sake of compact illustration figure 3 gives the 

covariance pattern for a family with three members and therefore  6 relational scores. The 
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results of the model specified in equation (7) are given in model 1 of table 4.The results are 

given in model 1 of table 4.  

The variance of random effects for all classifications are significant. The proportion 

of the total variance attributable to each classification is family (0.14), actor (0.19), partner 

(0.09), dyad (0.33) and residual directed score variance (0.24).   

 The actor effects pick up the extent to which individuals are consistently negative to 

all other family members; partner effects pick up the extent to which individuals consistently 

receive negativity from all other family members.  The family effect picks up the extent to 

which a family contributes to all relationships in the family.  It is worth emphasizing the 

family level effect which assesses “shared” or family-wide effects common to all the 

relationships within a family.  In this case, the findings suggest that, even after accounting for 

lower level effects at the individual and dyadic level, families differ from one another in their 

level of negativity.   

The dyad effect represents the extent to which individuals within a dyad behave 

similarly to each other. Snijders and Kenny (1999) point out that the correlation 

 can be thought of as the reciprocity correlation which, after having 

removed family, actor and partner effects, gives a measure of the correlation between a’s 

behaviour to b and b’s behaviour to a.  In this case the reciprocity correlation is 0.58 

indicating that within a dyad negative behviour stimulates a negative response.  In other 

situations where, for example, dominant and placating roles are enacted within dyads, a 

negative reciprocity correlation would be expected.  The actor/partner correlation 

)/( 222
edd σσσ +

)/( paap σσσ =0.52 indicates that individuals who act negatively in their relationships across 

all the other family members also elicit a shared high amount of negatively from other family 

members. 
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 We now consider including genetic effects to the model. Bussel et al (1999) conduct a 

genetic analysis on a subset of the negativity measurements using a bivariate structural 

equation model to explore adolescent relationships to siblings and mothers. They use 4 of the 

twelve directed measurements in their analysis. The first trait they consider is negativity to 

sibling, the c1→c2 and c2→c1 measures. The second trait they consider is mother’s 

negativity to adolescent, the m→c1 and m→c2 measurements. This second trait they regard 

as being a measurement of the child’s ability to elicit negativity from the mother, that is, a 

partner effect. In their conceptualisation both traits are measurements on the children and 

genetic correlations and cross-correlations can be estimated based on the relationship 

between the two children being measured. In their analysis they make no separation between 

actor and partner effects and dyad effects are also not included in the model. They find a 

large shared environment component of variation and moderate non-shared, additive genetic 

and dominance genetic components of variation. 

We can extend the model given in equation (7) to include additive and dominance 

genetic effects: 
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Where the actor effect for individual j in family m is divided into two parts and 

environmental effect,  and a genetic effect, .  Likewise the partner effect for 

individual k in family m is divided into two parts, an environmental effect,  and a genetic 

effect . The actor and partner effects represent different behaviours with separate 

genetic variances. The actor and partner genetic variances are further decomposed into 

additive and dominance components.  

jma jmg

kmp

kmg

The covariance between two relationship measurements, in family m, one with actor j1 

and partner k1 in dyad l1 and the other with actor j2 and partner k2  in dyad l2 is 
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Expanding the term for the genetic covariance we have 
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where are the additive and dominance actor genetic variance 

components and the additive and dominance partner genetic variance components 

respectively. The values for the additive and dominance relationship coefficients are those 

given from standard population genetics theory and are listed in Table 5. 

2222 ,,,
kkjj DADA σσσσ

The results are shown in model 2 of table 4. The zero estimates for the actor and 

partner additive genetic variances come about because they are estimated as negative (but 

non-significant) and are reset to zero. The total variance in model 1 and model 2 are 
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effectively identical 0.737 and 0.735. In model 1, the actor variance ( ) is 0.130. In model 

2, when we introduce genetic effects, the actor variance is splits into two components, 

environmental ( =0.055) and genetic ( =0.077).  Likewise, the partner variance in 

model 1(  is 0.064, splits almost exactly into environmental ( 0.014) and genetic 

( =0.049) components in model 2. The analyses of these data indicate that individuals do 

have common actor and partner effects across all their relationships within a family. The 

actor effects are stronger than the partner effects.  That is, the actor variance components are 

larger than the partner variance components.  Both an individual’s propensity to act 

negatively in relationships and individual’s propensity to elicit negativity in relationships 

have a genetic component.  In addition, there are family level factors that affect the quality of 

all the relationships in a family. For relationship negativity, the dyad is the single most 

important classification, 31% of the total variability in relationship quality is attributable to 

dyad level factors. 

2
aσ

2
aσ 2

Djσ

)2
pσ 2

pσ

2
Djσ

 Comparison with existing work that has used multilevel techniques to estimate genetic effects 

Guo and Wang (2002) and van den Oord (2001) also use multilevel models to 

estimate genetic effects. Guo and Wang work in terms of heritabilities and van den Oord in 

terms of the additive genetic variance. Both of these methods work by estimating different 

variance components and therefore different correlations for DZ twins, MZ twins, full sibs, 

half sibs and cousins. From this set of correlations they construct a set of simultaneous 

equations (in h2 or ), the solution of which is the desired genetic parameter.  Guo and 

Wang operationalize the model as a two level model (children within families) with dummy 

variables for MZ and DZ twins, full siblings, half-siblings and cousins defined as random at 

the family level.  These dummy variables are constructed in such a way that the set of 

2
gσ
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correlations (which are derived from the set of family level variance components) have the 

following ordering : CHFDM ρρρρρ >>=> .  

Van den Oord operationalizes the problem by setting up a multilevel model with the 

following structure: 

Level 4: all individuals in a level 4 unit are related at least as cousins 

Level 3: all individuals in a level 3 unit are related at least as half-sibs 

Level 2: all individuals in a level 2 unit are related as MZ twins, DZ twins or full sibs. 

Level 1: individuals 

A dummy variable specifying MZ twins is made random at level 2 to distinguish the 

MZ twin variance component from the DZ twin/full sib variance component. It is not clear 

how adopted children fit into this framework.  Interestingly, in sample used in the van den 

Oord study, some families included more than 2 children, although in the analysis a 

maximum of two children per family were included in analyses. 

Our method differs in two respects. Firstly, both these methods calculate the genetic 

parameter from the set of differential correlations derived from variance components for 

individuals of different degrees of relatedness. Van den Oord estimates four higher level 

variance components and Guo and Wang estimate five additional variance components (since 

they estimate different variance components for full-sibs and DZ twins). Both these methods 

would require still more parameters for more complex pedigree structures. Guo and Wang 

acknowledge that the technique of calculating the genetic parameter from several model 

estimated parameters, rather than estimating it directly is “an important issue that needs to be 

dealt with”, since hypothesis testing of such derived quantities is not straightforward. Our 

method estimates the additive genetic variance (and the shared and non-shared environment 

components) directly, irrespective of the complexity of the pedigree.  This more straight-
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forward formulation extends more readily to modelling gene-environment interactions with 

continuous or categorical environmental variables of the type demonstrated in this paper and 

to modelling other types of genetic effects, for example, dominance effects.  

Guo and Wang and Van Oord do not include genetic effects in their statement of the 

basic model as we do in equation (2) where we include the genetic effect for the child i in 

family j. Specifying genetic effects as random effects with given covariance assumptions is in 

line with the random effects literature, which spans many disciplines and therefore is a useful 

formulation to communicate these models to a wider audience. Purcell (2002) takes a similar 

approach within a variance components, structural equation modelling framework. Purcell  

estimates genetic, shared environment and non-shared environment variance components 

directly and uses a model that allows any of these variance components to be functions of  

measured environmental variances.  However, Purcell only develops models for twin studies 

rather than extended families. 

ijg

Discussion 

In this paper we present a parsimonious method for including genetic effects in 

multilevel models and, more broadly, for testing multiple conceptual issues in family 

research. Analysts may prefer these techniques over traditional structural equation genetic 

models in data sets which have a complex population structure of the kinds detailed in 

sections 6 and 7.   

Key features of this approach include the ability to handle complex population 

structures – not only children within families, but also families within neighborhoods, 

observations within children, or a potentially large number of crossed or nested random 

classifications (Browne et al, 2001).  In addition, the model is flexible with regard to the 

numbers of members per family (e.g., it can handle samples in which families have different 
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numbers of children) and genetic relatedness to one another, allowing for “extended family” 

designs in which genetic information is based not only on siblings but also parent-child 

relationships.  A further advantage of the approach is that it estimates genetic and 

environmental variance directly.  This creates improves power for testing gene-environment 

interactions in which the amount of genetic variance is modelled as a function of an 

explanatory variable.  Also this approach can be used to test hypotheses about family-level 

processes and effects for individuals or dyadic data.  Finally, the model provides an 

operationalization of “shared,” common, or family-wide effects from risks within the family 

that is an alternative to that suggested in behavioural genetics modelling.  That is significant 

insofar as several studies that have used multilevel modelling framework have found 

considerable evidence that some risks, such as parental conflict and parental divorce, have 

family-wide effects on children’s behavioural/emotional development (e.g., Jenkins et al., in 

press).  Similarly, as we demonstrate above, the model may be similarly more sensitive to 

gene-environment interactions than alternative methods or typical practice using available 

methods. 

We would not suggest that this analytic framework is the only manner of modelling 

family data, although its particular profile of strengths may make it especially amenable to 

apply to clustered family data and to test family theories.  At a minimum, further 

consideration of how multilevel approaches complement and extend – and are extended by – 

structural equation approaches warrants further examination and development.  Van den Oord 

(2001) also pointed out that a convergence of multilevel and structural equation modelling 

techniques is occurring, with multilevel modelling packages such as HLM and MLwiN 

(Rasbash et al., 2000) starting to incorporate factor analytic and structural equation models 

and structural equation modelling packages such as LISREL (Jureskog & Sorbom, 1996), 
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Mplus (Muthen & Muthen, 1998) and Mx (Neale et al, 1999) incorporating hierarchical 

structures.   

Collating data from multiple family studies with differing structures and complexity 

will provide a testing ground for replication of conceptual hypotheses.  In addition, 

coordinating data analyses from multiple studies may also identify which sorts of integrated 

approaches may be most likely to encourage family researchers to tackle questions 

concerning “family effects” in a more rigorous manner. 
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Appendix 

Estimation Algorithm for including arbirtrarily complex pedigree information in multilevel 

models 

The algorithm used to estimate the models in this paper is a minor adaption of the 

IGLS(iterative generalised least squares) algorithm described in full in Goldstein(1986) and a 

computationally efficient algorithm is given in Goldstein and Rasbash(1993). For brevity and 

clarity we describe how the IGLS algorithm works for the two level model 

 

),0(~),0(~

)(
22
eijuj

ijjijij

NeNu

euXBy

σσ

++=
 (6) 

 

We then describe how genetic effects are included.  In (6) 
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If V is known then the usual GLS estimator of Β is 
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If V is not known estimate (1) assuming V = I. Now we can get an estimate of  

and therefore V  by forming: 
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The expected value of TYY ~~ is V.   We can form the linear model 
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where F is a residual term. Showing the elements in (9) explicitly, we have : 
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where the response is modelled by two explanatory variables with coefficients  to be 

estimated.  This can be estimated by GLS where 
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    (11) 
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Estimation proceeds by switching between (8) and (11). Variances and covariances between 

further sets of random effects can be included by adding extra columns into the Z* matrix of 

the appropriate structure.  Typically columns of Z* are formed from cross-products of 

explanatory variables that have random coefficients. In (6) only the intercept has a random 

coefficient(at level 1 and level 2) hence the Z* design vectors contain only ones and zeros. 

The basic multilevel model assumes, within a set of random effects, that effects are 

independent. That is 
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In some cases, for example spatial or time series models this assumption is relaxed. In time 

series models the correlation between two measurements made on the same individual at 

different points in time is modelled as function of the distance in time between the 

measurements. With genetic effects we have an analagous situation, where the genetic 

correlation between two individuals is modelled as a function of the genetic distance 

seperating the two individuals. Given the basic multilevel model including genetic effects : 
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With our example “toy” data set of two  families(j) each of two kids(i) containing FS and HS, 

respectively we can construct : 
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Equation (7) and (9) now become: 
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Otherwise estimation proceeds as outlined above. Gene environment interactions are 

estimated by adding a further column(s) to Z* which are the product of the environmental 

variable(s) and R. 
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Table 1a 

Variance Components for Adolescent Depression 

 Model 

Parameter Model 1 Model 2 

Fixed estm (se) estm (se) 

     Intercept( 0β ) 0.008(0.017) 0.02(0.017) 

Random   

     Shared env( ) 2
uσ 0.086(0.011) 0.018(0.017) 

     Non-shared env( ) 2
eσ 0.198(0.011) 0.690(0.010) 

     Genetic( ) 2
gσ - 0.209(0.022) 

     Deviance 2165.88 2129.2 
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Table 1b  

Variance Components for Adolescent Depression Including Covariates 

Parameter Model 3 

Fixed estm (se) 

     Intercept -0.285(0.087) 

     Age 0.011(0.006) 

     Maternal negativity 0.157(0.024) 

     Paternal negativity 0.216(0.026) 

     Girl 0.158(0.028) 

     Stepfamily 0.105(0.029) 

Random  

     Shared env( ) 2
uσ 0.0035(0.014) 

     Non-shared env( ) 2
eσ 0.70(0.096) 

     Genetic( ) 2
gσ 0.148(0.020) 

     Deviance 1780.95 
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Table 1c  

Variance Components for Adolescent Depression Adding Complex Variation and Gene-

Environment Interactions 

 Model 

Parameter Model 4 Model 5 

Fixed estm (se) estm (se) 

     Intercept -0.273(0.080) -0.232(0.079) 

     Age 0.011(0.005) 0.009(0.005) 

     Mat_neg 0.170(0.024) 0.166(0.024) 

     Pat_neg 0.210(0.028) 0.214(0.27) 

     Girl 0.159(0.027) 0.161(0.028) 

     Stepfam 0.097(0.028) 0.089(0.028) 

Random   

     Shared env   

      )(
0

uα 0.0006(0.014) 0.054(0.012) 

      )(
1

uα -0.017(0.019) - 

     Non-shared  env   

      )(
0

eα 0.073(0.009) 0.071(0.009) 

      )(
1

eα 0.0078(0.010) - 

     Genetic   

      )(
0

gα 0.155(0.021) 0.131(0.029) 

      )(
1

gα 0.093(0.023) 0.077(0.013) 
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      )(
2

gα  0.055(0.017) 

     Deviance 1740.42 1730.42 



   Multilevel Models     42 

  

Table 2 

Decomposing Variation of Child Aggression in NLSCY. 

 Model 

Parameter model 1 model 2 model 3 

Fixed estm (se) estm (se) estm (se) 

     Intercept 0.835(0.008) 0.836(0.008) 0.524(0.072) 

     Child age   -0.275(0.0027) 

     Boy   0.169(0.013) 

     SES   -0.038(0.010) 

     Maternal depression   0.011(0.001) 

     Violent home   0.147(0.017) 

     Parental negativity   0.091(0.002) 

    

Random    

     Shared env( ) 2
uσ 0.270(0.011) 0.089(0.083) 0.057(0.065) 

     Non-shared env( ) 2
eσ 0.433(0.009) 0.242(0.086) 0.199(0.068) 

     Genetic( ) 2
gσ  0.373(0.168) 0.298(0.134) 

     Deviance 32294.2 32286.8 29109.00.835 
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Table 3 

Results for a Multilevel, Multivariate Response with Genetic Effects 

 Variance  

(antisocial) 

Variance  

(depression) 

Covariance  

(antisocial, depression) 

Family 0.068(0.017) 0.025(0.017) 0.027(0.013) 

Individual 0.051(0.008) 0.078(0.011) 0.020(0.007) 

Genetic 0.180(0.019) 0.181(0.025) 0.069(0.016) 

    

Total 0.299 0.284 0.116 
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Table 4 

Results from Models for Dyadic Relationship Data with Genetic Effects 

 Model 

Parameter Model 1 

estm (se) 

Model 2 

estm (se) 

intercept( 0β ) 2.85(0.018) 2.85(0.018) 

family variance( ) 2
fσ 0.099(0.015) 0.096(0.015) 

actor variance(  )2
aσ 0.130(0.011) 0.055(0.015) 

partner variance( ) 2
pσ 0.064(0.010) 0.014(0.013) 

actor, partner covariance( apσ ) 0.047(0.01) 0.045(0.010) 

dyad variance( ) 2
dσ 0.230(0.013) 0.232(0.013) 

directed score variance( ) 2
eσ 0.167(0.005) 0.167(0.005) 

additive actor genetic( ) 2
Ajσ  0.0 

dominance actor genetic( ) 2
Djσ  0.077(0.013) 

additive partner genetic( ) 2
Akσ  0.0 

dominance partner genetic( ) 2
Dkσ  0.049(0.011) 

-2log like 17669.7 17595.0 
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Table 5 

Additive and Dominance Relationship Coefficients 

Relationship between individuals b and c )(
),(

a
cbr  

)(
),(

d
cbr  

Parent –offspring 1 / 2  

Half-sibs 1 / 4  

Full sibs, DZ 1 / 2 1 / 4 

MZ 1 1 
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Figure Captions 

Figure 1. Gene-Environment Interactions for Depression with Paternal Negativity and 

Gender. 

Figure 2. Unit Diagram Showing Relationships between Classifications for NEAD 

Observational Data. 

Figure 3. Covariance structure arising from equation(7) for a family with three members(1,2 

and 3 where 1->2 is the response with actor family member 1 and partner family member 2 

and so on); . apepadf cepadf σσσσσσ ====== ,,,,, 22222
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Figure 1 
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Figure 2 
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Figure 3  

 1->2 2->1 1->3 3->1 2->3 3->2 
1->2 f+d+a+p+e      
2->1 f+d+2c f+d+a+p+e     
1->3 f+a f+c f+d+a+p+e    
3->1 f+c f+p f+d+2c f+d+a+p+e   
2->3 f+c f+a f+p f+c f+d+a+p+e  
3->2  f+p f+c f+c f+a f+d+2c f+d+a+p+e
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