Appendix to "A General Multilevel Multistate Competing Risks Model for Event History Data, with an Application to a Study of Contraceptive Use Dynamics", *Journal* of Statistical Modelling, 4(2): 145-159. Fiona Steele, Harvey Goldstein, and William Browne

Data Preparation for a Discrete-time Multilevel Multistate Competing Risks Model

Data preparation is discussed in the context of the contraceptive use dynamics example described in the paper. We consider two states: use (i=1) and non-use (i=2).

Suppose that a woman uses contraception for 18 months, then discontinues and does not use contraception for 14 months; she then resumes contraceptive use for 27 months, before switching to another method and continuing use of this method for 1 month at which point the survey takes place and the episode is censored. The episode-based data file is shown in Table 1.

Individual (k)	Episode (j)	State (i)	Duration	Transition	Censor
			(months)		
1	1	1	18	Discontinue	0
1	2	2	14	Start to use	0
1	3	1	27	Switch	0
1	4	1	1	None	1

 Table 1. Episode-based file

Censor indicates whether the episode is right-censored; here, the duration of the first three episodes is completely observed.

The first step in restructuring the data for a multinomial discrete-time model is to create a multinomial response for each time interval, perhaps after grouping durations into broader intervals. We will group the data into six-month intervals, so *t*=0 for 0-5 months, *t*=1 for 6-11 months etc. The multinomial response y_{tijk} has R_i categories for state *i*, where $R_i = 2$ for *i* = 1 and $R_i = 1$ for *i* = 2. The multinomial response is coded as follows:

 $y_{tijk} = 0$ if no event has occurred

1 if individual discontinues contraceptive use (i = 1), or if individual starts to use contraception (i = 2)

2 if individual switches to another method (i = 1 only)

In addition, two indicator variables, I_1 and I_2 , denoting the state are created. These are interacted with *t* and covariates. The restructured dataset is shown in Table 2.

k	j	i	t	Exposur	e y _{tijk}	I_1	I ₂	$I_1 * t$	$I_2 * t$
1	1	1	0	6	0	1	0	0	0
1	1	1	1	6	0	1	0	1	0
1	1	1	2	6	0	1	0	2	0
1	1	1	3	1	1	1	0	3	0
1	2	2	0	6	0	0	1	0	0
1	2	2	1	6	0	0	1	0	1
1	2	2	2	3	1	0	1	0	2
1	3	1	0	6	0	1	0	0	0
1	3	1	1	6	0	1	0	1	0
1	3	1	2	6	0	1	0	2	0
1	3	1	3	6	0	1	0	3	0
1	3	1	4	4	2	1	0	4	0
1	4	1	0	2	0	1	0	0	0

Table 2. Data in discrete-time format (1 record per 6-month interval)

The *exposure* variable is the number of months in a six-month interval for which the woman was at risk of an event. For example, the first episode ends in a discontinuation at month 18. Therefore the woman was at risk of discontinuation (or a switch) for the whole of the first three six-month intervals (0-5, 6-11, and 12-17 months) and just one month in the fourth interval (18-23 months). In the analysis, observations are weighted by the number of months

of exposure; the variable *exposure* is defined as the denominator for the multinomial response y_{tijk} .

To fit a multilevel multinomial model in *MLwiN*, the data must be further expanded to obtain a set of binary responses for each multinomial response. This reconstruction is carried out automatically when a multinomial model is specified in *MLwiN*. Therefore data may be read into *MLwiN* in discrete-time format (see Table 2). Note that this further expansion of the data is required only for episodes that originate in state 1, where two types of event are considered; since there is only one type of event that can occur in the non-use state the indicator of event occurrence for episodes originating in state 2 is binary. For *i*=1, the multinomial response y_{t1jk} for each time interval *t* is converted to two binary responses $y_{t1jk}^{(r)}$, where $y_{t1jk}^{(r)} = 1$ if $y_{t1jk} = r$ and 0 otherwise (r = 1, 2). For each time interval, the two binary responses are stacked. Thus, for the first episode in the example above the final data structure is shown in Table 3.

t	r	$y_{t1jk}^{(r)}$	$I_{1}^{(1)}$	$I_1^{(2)}$	${ m I}_{1}^{(1)} * t$	$I_1^{(2)} * t$
0	1	0	1	0	0	0
0	2	0	0	1	0	0
1	1	0	1	0	1	0
1	2	0	0	1	0	1
2	1	0	1	0	2	0
2	2	0	0	1	0	2
3	1	1	1	0	3	0
3	2	0	0	1	0	3

Table 3. Data in *MLwiN* format for a multinomial response model

The indicator for state 1, I_1 , is replaced by indicators for r, $I_1^{(1)}$ and $I_1^{(2)}$. These are multiplied with duration and the covariates to allow duration and covariate effects to vary according to the type of transition from contraceptive use. The destination-specific individual random effects for state 1, $u_{1k}^{(1)}$ and $u_{1k}^{(2)}$, are fitted by allowing the coefficients of $I_1^{(1)}$ and $I_1^{(2)}$ to vary

randomly across individuals. In addition the random effect for state 2, u_{2k} , is obtained by allowing the coefficient of I₂ to vary across individuals.