
Memory Vulnerabilities in Binary Code
PhD Student: Graham Peden; Supervisor: Prof Awais Rashid: Sponsor: Toshiba UK

Bristol Cyber Security Group, Woodland Road, Merchant Venturers Building, Bristol BS8 1UB, UK

The Problem

◦ Modern languages and techniques help to avoid many
coding errors associated with the C language.

◦ Firmware written in C is found in legacy systems and is
still used in developing embedded code for IoT devices
and industrial control systems.

◦ Bugs can easily occur when allocating and using memory
resources, and these are frequently difficult to find!

◦ Typical memory bugs include writing beyond the end of a
buffer’s allocated size, or using memory after it is freed. Figure 1: C is still widely used in firmware for IoT and other devices

Existing Approaches

◦ Often an expert undertakes a detailed study of a program,
but automated analysis at scale is desirable.

◦ Much work has been done analysing the source code of
programs, but less for binary code.

◦ Static analysis scrutinises code without running the
program; dynamic analysis executes code to some
degree.

◦ Machine learning techniques have been applied, often
splitting programs at jump statements to create basic
blocks. These can be transformed into features within a
training dataset, with the location of known bugs marked.

◦ Neural networks and other ML algorithms can predict the
presence of bugs in new binary code.

Same Needle; Larger Haystacks

◦ Reproduce 6 papers: All use Juliet Data Set
◦ Different feature representations and models
◦ Embed Juliet functions inside larger, generated binaries
◦ Increase binary complexity and size with dummy code
◦ Score each model on original vs new datasets
◦ Does accuracy decrease and if so, in what way?

Call Flow Graphs ==> Data Mining?

◦ Program Analysis techniques can track data usage
back to origin

◦ Features such as memory allocation, loops and pointer
arithmetic are detectable

◦ Collected features can be used to learn patterns
indicating pathologies


	

