Numerical simulation of Radionuclides Transport through Suspended Material into the Tokyo Bay.

Yosuke Yamashiki, Assoc. Professor Kyoto University Disaster Prevention Research Institute Data Collection Advisor UNEP GEMS Water Programme How much Radionuclides relased from Explosion of TEPCO Fukushima Daiichi Nuclear Power Plants

- 12 March 2011, Unit 1, Hydrogen Explosion Unit 1.
- 15 March 2011, Losing control in Operator
- 14 March 2011, Hydrogen (Nuclear) Explosion in Unit 3.
- 14 March 2011, Fire at the spent fuel pool in Unit 4.

How much Radionuclides in the Reactor (I-131, Cs-134, Cs-137)?

- I-131 4.68 E + 17 / 6.1 E + 18 ... 7.6 %
- Cs-134 1.56 E + 17
- Cs-137 1.56 E + 17 / 7.1 E + 17 ... 21.9 %
- Radioactive lodine in the nuclear reactor 6.1 E + 18
- (Jap. Min. Edu)
- Total Radiocesium in the nuclear reactor 7.1 E + 17 (Jap. Min. Edu)
- Total Radionuclides equivalent to Iodine (Converted into I-131)
 - = 770,000 Tela Bq = 7.7 E + 17

A map of radiation dose by Dr. Hayakawa

Results of measurement by dose meter u Sv/h

Results of observation measured in the car

Hydrological Observation Yosuke Yamashiki Taeko Wakahara Yuichi Onda Yasuhito Igarashi Yasuto Tachikawa Michiharu Shiiba

Hydrological Observation Sensor

- Water pressure sensor
- Suspended material capture
- Turbidity sensor
- Data loggar
- Rain guage

Structure for the measuring

• Modelo hidrologico

Monitoring points

Monitoring points

Monitoring point No1

Monitoring Point No1

Monitoring Point No1

Monitoring Point No1

Daily radionuclide fluxes

	Averaged DAILY SS FLUX			
	137Cs		134Cs	
	FLUX(Bq)	誤差Bq	FLUX(Bq)	誤差Bq
01水境川	1.40E+08	8.61E+06	1.22E+08	7.89E+06
02口太川上流	1.49E+08	4.13E+06	1.34E+08	4.45E+06
03口太川中流	4.34E+08	2.89E+07	3.51E+08	2.48E+07
04口太川下流	2.56E+09	6.68E+07	2.17E+09	5.98E+07
_ 上記4地点の平均期間	(2011/ 6/ 21/ 12:00- 2011/ 8/ 30/ 12:00)			
05伏黒	8.88E+10	3.69E+09	8.21E+10	2.35E+09
伏黒の平均期間	(2011/ 8/ 10/ 12:00- 2011/ 8/ 30/ 12:00)			
06岩沼	2.81E+10	1.44E+09	2.28E+10	1.29E+09
岩沼の平均期間	(2011/ 8/ 10/ 12:00- 2011/ 8/ 30/ 12:00)			

Suspended particlate matter transport

	Contribution of Suspended		
Location	Period	Cs-134 (%)	Cs-137 (%)
Sakai 🗆	2011/6/21 12:00 - 2011/8/30 12:00	96.9	96.6
Upstream Kuchibuto	2011/6/21 12:00 - 2011/8/30 12:00	94.6	93.8
Middle Kuchibuto	2011/6/21 12:00 - 2011/8/30 12:00	92.7	92.4
Outlet Kuchibuto	2011/6/21 12:00 - 2011/8/30 12:00	97.8	97.6
Middle Abukuma	2011/8/1012:00 - 2011/8/30 12:00	94.6	95.6
Outlet Abukuma	2011/8/10 12:00 - 2011/8/30 12:00	68.9	75.7

Sub-basin 002 (No. 002)

Sub-basin 003 (No. 001)

Lagrangian Hydrological Model

- Most of Radiocesium may transported via suspended particulate form, not via dissolved form.
- Suspended particulate matter should keep their properties through their transport into downstream.

Decay Coefficients $CI131_{T=T+DT} = CI131_T \exp(-/_{I131}DT)$

 $/_{Cs137} = 0.0000633$ $/_{Cs134} = 0.000921$ $/_{I131} = 0.08621(/day)$

Bottom sediment

Dry & Wet deposition

Lagrangian Hydrological Model Tokyo Bay

3D Estuary Model Tokyo3D

Cs137 Dispersion in Tokyo Bay

Cs134 Dispersion in Tokyo Bay

I131 Dispersion in Tokyo Bay

NHK Television Movie

Observation results

Conclusion

- Radioactive sediment (containing radionuclides released from the Fukushima nuclear power plant) in Tokyo Bay may increase within three years of its release due to an increase of hydrological transport (mainly induced by the Cs137/134), and may last for more than 10 years (mainly by Cs137).
- The model also predicted bottom-sediment contamination near the Obitsu River outlet, as well as in some hotspots at outlets of the Edo and Ara rivers.

Conclusion

- However, so far serious contamination in fishes and shellfishes
- Sediment treatment should be examined into contaminated bottom sediment to avoid further dispersion in the Bay