We utilize both statistical and
‘hydrological’ (signature) objective functions
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We find significant variability in parameter
sensitivity across the study region

(High flows) (Low flows)  (Water Balance) (Regime)
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v’ Patterns are correlated to hydroclimate, R up to 0.96
v Impervious area parameters important for peaks

v Lower zone impacts peaks through percolation

v Similar lower zone behavior for RMSE and TRMSE
v Importance of parameters that control ET losses

v’ Large differences between driest and wettest rewsne
[van Werkhoven et al. 2008 WRR]



These results have important consequences for
model calibration and evaluation

= Parametric control varies significantly, though is
traditionally assumed constant across watersheds
and time periods

= Greater model complexity might be justified for flexibility
across watersheds, contrary to past assertions

= Aggregation is evil!

Methods for evaluation and identification that ignore model
behavior or assume static behavior are ill-formulated and
might bias results!
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IDENTIFYING SPATIALLY
DISTRIBUTED MODELS
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We created a series of experiments to test the
relationship between model forcing and its behavior

5 rainfall events

(‘synthetic’ "Bz

catchment) ==§§-§5§ ;
Blue River, OK .
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Uniform rainfall does not provide information
about the upper part of the catchment

(@) Uniform Ptot & Si (b) Uniform Ptot , Random Si
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Vertical and horizontal sensitivity changes with
objective function chosen

(c) RMSE Sensitivity
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Spatially distributed model identification strategies
need to be dynamic to use information well!

= Information content of streamflow data is dynamic
and mainly controlled by precipitation (near surface)

Existing calibration approaches (e.g. multipliers) do
not account for dynamically varying information in
streamflow data - thus add bias to parameters!

= The value of streamflow data extends only into
portion of the watershed upstream from the gauge

This needs to be incorporated into observational
network design to maximize the value of streamflow
observations and to provide information everywhere!
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How can we assess models without local
historical observations of streamflow?

PREDICTION OF UNGAUGED
LOCATIONS AND OF CHANGE
IMPACTS
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We can assess signhatures for a large number of
catchments, e.g. regarding how catchments partition
rainfall into runoff and evapotranspiration
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We can then build a model of this spatial
variability

'® Lochsa o
© Lower Androscoggin

© Escambia
@ Meramec

0.8 [® Yampa

= 4
0 550 1,100 2,200 Miles
L 1 | 1 J

0 0.5 1 1.5 2 2.5 3
PE/P [-]

For example using the empirical model by Schreiber to estimate runoff
ratio based on climate alone (PET and P).
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In the past we have used these spatial models
to reduce the PUB problem by assimilating this
information into a local catchment scale model
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We can then use this knowledge to reduce the
uncertainty in PUB (and change projections) by
constraining/conditioning ensemble predictions

of watershed models!!!
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This approach is complementary to other strategies of deriving PUB!
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Sensitivity also varies in time within the same
catchment

Dry year Average year Wet year
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This suggests that model behavior and hence
model parameters also vary in time!
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We found further evidence of this climatic
control on parameters
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The observed historical variability in hydrologic
variables at one place is often limited, and hence
our ability to know a catchment’s response

Observed variability in
single catchment
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Observed variability
across many catchments!
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Increasingly Drier
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We can also do this assuming a temporal
gradient at the same location, i.e. we can trade
space for time
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In summary, there is a need to re-
assess how we identify and evaluate
models for change impact
projections/predictions
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