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Non-linear dynamics and uncertainty
Systems-thinking approaches
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BLADE facilities

- £20m Bristol Laboratory
for Advanced Dynamics
Engineering

* Integrated dynamics and
materials test facilities

« Complemented by new
university supercomputer

« Co-locating researchers
from different disciplines

Structural Dynamics Earthquake & Civil
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Fractal performance diagrams Incremental dynamic analysis

Non-linear dynamics and
uncertainty



Self-aligning buildings
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Non-linear elastic MRF
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 Non-linear elastic

 ‘Self-centring’
capability

* Robustness and
durability
 Large deformation
capacity with limited
structural damage

* Repeatable
characteristics up to

design limit states



Non-linear softening resonance response
Using numerical continuation
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Non-linear dynamic properties

«  Amplitude dependant
natural frequency
« Softening

« Co-existing steady state
solutions

« Jumps due to change in
phase between forcing and
response velocity
(absorbed power P(t) =
F(t)*v(t))

« Chaotic under harmonic
forcing

« Sensitivity to initial
conditions and forcing
* Fractal response
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Test cancelled when amplitude
exceeds design limit of 20mm
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Potential wells for linear and
cubical elastic oscillators
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(b) Potential well — linear spring

V(x)= [k(x)dx = k(X?)
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Cubic well basin erosion under
Increasing sine pulse load

Pixel coords are starting
values of system
displacement and velocity.

Pixel colour shows outcome
Escape direction

Red = left

Green = right

Amp =0.3 Amp =0.4



Kinematic elasto-plastic well
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Absorbed power & seismic response

ree (pink), Velocify {(blue), dbsorbed Power (grey), Cumulative yield (red [—\plastic)
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P(t)=F(t)Vv(t)

« Maximum power absorbed when forcing and response
velocity are in phase



Elasto-plastic basin erosion
under increasing impulsive load

Escape direction
Red = right
Green = left




Seismic fractal escape

Constant Kanai-Tajimi  Eigis
Input power spectrum g

Vary

« Slope of linear
phase distribution

« Amplitude

- Compute response
White — safe
Red — fail in 2nd 16t
time segment of input

Green — fail in 3 16t
time segment

Blue — 4t 16t
segment

etc




Performance

forecast
RCEP Generation mix
capacity scenarios .
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Systems thinking, system
performance, decision-making
and uncertainty



Model manager
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Hierarchical performance modelling

Hierarchical model of the reservoir system

Overview Views of performance in selected areas of interest
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Hierarchically ordered model

is constructed on the basis of

expert judgement of system
processes and their
interrelationships.

Reservoir system

Dam Water
control
| Water
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| Water

Towers a Tail race control
| Water
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Tail race Drum

gates
[
Weighted links represent

the criticality of a sub- ' I. | | i | | i [

system to the performance

Tailrace

of the super-system

Weighted combination of performance Library of value functions
indicators and value functions
generate ‘Figures of Merit’ which are
displayed in the hierarchical model

Expert judgements — : :
from inspections Database of 200 400 600
*Records and reports performance
«Instrumentation indicators
measurements

*Analytical models

Performance indicator

Organisational values and objectives
Codes of practice
Company and regulatory standards




ESI example
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Mapping sustainable performance to
avallable asset choices and decisions
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Long term infrastructure performance:
Clifton Suspension Bridge







Risk awareness training




UK research questions

* |Infrastructure

* Renewal, life extension
« “Getting more from less™?
* Primary focus on service delivery, not asset?

Interdependencies, vulnerabilities and resilience
 Social learning leading to definition/calibration of resilience?
 Improve reliability, reduce cost?

New ownership, governance, investment and
business models

« Secure, long term, investment proposition?

« Making infrastructure an ‘entrepreneurial’ space?

Needs-driven performance
* Focus on service provided by asset, not asset itself

Decision-appropriate risk assessment methods/tools



«« Advanced composite bridge

decks
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Nonlinear Seismic Assessment of
Reinforced Concrete Reservoir Towers

Intake and outlet towers regulate reservoir water release, sometimes in
emergencies

2x300kN actuators

Reaction wall set-up for tower specimens



« GRP ‘wallpaper’ strengthening of
masonry walls







Seismic safety of graphite
nuclear reactor cores




Motion isolation using soft caisson
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Kinematic and inertial
moments In piled foundations
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University of Patras, Greece
Ecole Centrale Paris, France
NGI, Norway

EU FP7 SERIES Project:
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Measured moments in piled
foundations

Pile 4 Pile 5
M [Nmm] M[Nmm]
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Other EU SERIES funded projects
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