

vpical forecast q	uestion: GIVEN c	urrent conditi	ons, what is the
probability tha	t within the ne	xt year the t	first significant
development w	ill be the resump	tion of lava ex	trusion
	Credible interval lower bound	Median estimate	Credible interval upper bound
SAC elicitation	6.3%	34.1%	66.1%
Brier Skill Score :	the forecast metho	od has predictiv	e skill relative to
some reference (e	e.g. climate record)	if BSS is positi	ve.

	+ve BSS	zero or -ve BSS
All forecasts	84	26
(110 no.)	(76%)	(24%)
Life critical	61	14*
forecasts (75 no.)	(83%)	(17%)

	Brier Skill Score for weather forecasting
Brier Score BS = $\frac{1}{n} \sum_{k=1}^{n} (f_k - o_k)^2$	 <i>o_k</i> = 1 if the event occurs 0 if the event does not occur <i>f_k</i> is the probability of occurrence according to the forecast system BS can take on values in the range [0,1], a perfect forecast having BS = 0
Brier Skill Score	
$BSS = \frac{BS_{cli} - BS}{BS_{cli}}$	If BSS is positive, the forecast system has predictive skill relative to some reference (e.g. climate record);
$BS_{cli} = \overline{o}(1 - \overline{o})$	a perfect forecast gives BSS = 1 \overline{o} = total frequency of the event (e.g. from climate)

	Target Question Grouping	
<u>Questions</u>	Subject Area	
1-7	Prevalence	
8-11	Risk Parameters	
12-15	Latency	
16-22	Routes of Transmission	
23-25	Risk Mitigation	
26-30	Disease Relationships	
	(causal and non-causal)	

Preva A set of target quest the world (1), Canac population? (1 in xx)	Prevalence: Target Questions 1, 3-6 of target questions that asked about the current prevalence of XMRV infection vorld (1), Canada (3), USA (4), UK (5) and France (6) in the general adult lation? (1 in xxxxx)	
Country	Expert Weighted	Expert Range
Canada	1 in 334	1 in 12 – 1 in 305,500
USA	1 in 279	1 in 12 – 1 in 305,500
UK	1 in 450	1 in 12 – 1 in 305,500
France	1 in 450	1 in 12 – 1 in 305,500

M1. What percentage of individuals infected with XMRV longer than 3 months have detectable antibodies?

M2. What percentage of individuals persistently infected with XMRV longer than 3 months have detectable nucleic acids by NAT testing in their blood?

M3. What percentage of individuals persistently infected with XMRV longer than 3 months have detectable nucleic acids by NAT testing in their plasma?

M18. What is the probability of sexual transmission of XMRV between partners in a long-term relationship assuming one partner is XMRV infected?

M31. What percentage of infected XMRV carriers are asymptomatic?

M32. When will the data be available to generate testing/ screening of blood donors for XMRV.

irst author, country Journal, date		Patients positive for XMRV?
Lombardi, USA	Science, October 2009	Yes (67%)
Erlwein, UK	PLoS One, January 2010 & March 2011 (re-analysis)	No
van Kuppelweld, Netherlands	British Medical Journal, February 2010	No
Groom, UK	Retrovirology, February 2010	No
Swizer, USA	Retrovirology, July 2010	No
Lo, USA	Proc Natl Acad Sci, August 2010	No (but 86.5% MLV)
Hong, China	Virology Journal, September 2010	No
Henrich, USA	J Infect Dis, November 2010	No
Hohn, Germany	PloS One, December 2010	No
Satterfield, USA	Retrovirology, February 2011	No
Furuta, Japan	Retrovirology, March 2011	No
Schutzer, USA	Ann Neurol, April 2011	No
Shin, USA	Journal of Virology, May 2011	No

Willy Aspinall

The Harvard study on Kuwait's First Gulf War reparations claim

• Health effects claim based on expert elicitation: ~ 35 deaths

Individual experts' best mortality estimates: 13, 32, 54, 110, 164, 2874

Equal Weights (82 deaths; 90% conf.: 18 to 400) Performance Weights (35 deaths; 90% conf.: 16 to 54)

The judicial decision of the UN Commission eventually rejected the admissibility of this form of evidence: "...not actual data....."

There are several methods of such expert

a specific type of dam, once such leakage starts.

Willy Aspinall

views within the group.