
© 2010 Royal Statistical Society 0035–9254/10/59737

Appl. Statist. (2010)
59, Part 5, pp. 737–760

Predicting snow velocity in large chute flows under
different environmental conditions

Jonathan Rougier

University of Bristol, UK

and Martin Kern

BFW Institute for Natural Hazards and Alpine Timberline, Innsbruck, Austria

[Received January 2009. Revised February 2010]

Summary. Observations, model evaluations and expert judgements are combined to make
predictions of snow velocity in large chute experiments.Different experimental variables, namely
the environmental conditions snow density and snow surface temperature, affect all aspects of
this inference. We show how the effect of these two variables can be incorporated in our judge-
ments regarding the uncertain parameters of the physical model, the discrepancy between the
physical model and reality and the observation error. We adopt a Bayes linear approach to
avoid the necessity of fully probabilistic belief specifications and demonstrate visual tools for
statistical validation. Our results represent an important first step in improving the specification
of uncertainty in model-based avalanche hazard mapping.
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1. Introduction

It is very important to understand the behaviour of avalanches: how, for example, the speed
of an avalanche depends on the inclination of the slope, on the snow density and on the snow
temperature. One source of data is from avalanches themselves but, for obvious reasons, these
opportunistic observations are difficult to come by. Experiments provide a second source of
data. In this paper we focus on chute experiments that are carried out at the WSL Institute for
Snow and Avalanche Research SLF, at Davos, Switzerland.

These experiments take place under different environmental conditions, partly by design and
partly through circumstance. We would like to extrapolate from the experiments that we have,
to learn about snow velocities across a range of plausible environmental conditions. For this
we introduce a mathematical model which expresses the velocity profile as a function of these
conditions. The general idea is to use the mathematical model to construct a joint probability
distribution over the experiments that we have and those environmental conditions for which
we would like predictions, and then the observations are assimilated into the predictions by
probabilistic conditioning.

The statistical field of computer experiments is concerned with combining model evaluations
and observations. A particular challenge in this field is to account for the fact that some of the
model parameters are imperfectly known, and that the model itself is imperfect (Kennedy and
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Fig. 1. Photograph of the SLF snow chute at Weissfluhjoch, in Davos, Switzerland: the circle in the centre
of the picture indicates the half-wedge containing the optical sensor array (photograph, M. Schaefer, SLF)

O’Hagan, 2001; Craig et al., 2001; Goldstein and Rougier, 2004, 2009). This challenge becomes
more acute when the model outputs and the system behaviour are multivariate. In our applica-
tion, for example, the model output is functional, and the system is observed at a discrete set
of abscissae (heights). But our application also introduces a further complication: variations in
the environmental conditions. One methodological contribution of this paper is to show how
environmental variables can be included in a computer experiment, taking account of the fact
that they can affect all aspects of the statistical model that links the model parameters, the
model evaluations and the system, and the system observations. Although our environmental
variables are what are sometimes termed concomitant variables (Cox, 1958), the method that
we describe extends immediately to experimental variables as well. A second statistical con-
tribution is to demonstrate a detailed elicitation, including validation, for a complex physical
process.

The outline of the paper is as follows. Section 2 describes the background to the experiments,
and the mathematical model that we adopt. Section 3 describes the statistical framework that
we use to combine model evaluations and observations, over a range of environmental condi-
tions. Section 4 describes our choice of inferential treatment, the Bayes linear approach and the
simplifications that follow from it. Sections 5 and 6 describe our statistical modelling choices,
and the results of our analysis, including diagnostic assessment. Section 7 concludes. Appendix A
describes our approach for specifying random quadratic functions.
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Fig. 2. Environmental conditions in 10 experiments (labelled A–J), indexed by snow density and snow
surface temperature

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss

2. The experiments and the physical model

In this section we present a summary of the chute and the experiments, and describe the nota-
tional modifications that we have made to the physical model. A more detailed account can be
found in Kern et al. (2004), and the references below.

2.1. The chute and the experiments
Our experiments were performed on the SLF snow chute at Weissfluhjoch, shown in Fig. 1,
which is 34 m long and 2.5 m wide. In each experiment, 8.4 m3 of snow were released from a
hopper at the top of the chute. The snow then accelerated along a 10-m section, at the end of
which it was approximately in steady state. Downslope velocities of the flow were measured by
an optical sensor array placed in a half-wedge at the centreline of the chute, half a metre beyond
this section. This array comprised 40 sensors placed in eight rows of five sensors each, with a
vertical spacing of 13 mm and a horizontal spacing of about 10 mm. The snow velocity at the
sensor, at height z measured perpendicular to the chute, is denoted by v.z/.

For our analysis we use 10 experiments which were performed under different environmental
conditions, indexed by the snow density ρ, the ambient air temperature Ta and the snow surface
temperature Tss. For the snow and air temperatures, we use measurements that were recorded by
an automatic weather station at the nearby Weissfluhjoch experimental site. The environmental
conditions for the 10 experiments are summarized in Fig. 2, and the observations are given in
Figs 3 and 4.

For a detailed description of the measurement set-up, the working principle of the optical
velocity sensors and a discussion of the systematic measurement errors, see Tiefenbacher and
Kern (2004), Kern et al. (2004) and McElwaine and Tiefenbacher (2005).
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Fig. 3. Those experiments with low snow surface temperatures (Tss, snow surface temperature; Ta,
atmospheric temperature; ρ, snow density; , measurements and error bars ˙2 standard deviations; the
measurements have been interpolated to make the velocity profile easier to see) (the velocity plots are
oriented by using the common convention in snow science, in which velocity (the response) is plotted
on the horizontal axis and height (the distance above the chute floor, in a direction normal to the chute floor)
is plotted on the vertical axis): (a) experiment A, Tss D�14 ıC, Ta D�6 ıC, ρD317 kg m�3; (b) experiment B,
Tss D �12 ıC, Ta D �5 ıC, ρ D 317 kg m�3; (c) experiment C, Tss D �12 ıC, Ta D �12 ıC, ρ D 345 kg m�3;
(d) experiment D, Tss D �10 ıC, Ta D �6 ıC, ρ D 317 kg m�3; (e) experiment E, Tss D �10 ıC, Ta D �13 ıC,
ρD396 kg m�3

2.2. Herschel–Bulkley model
Observations on flowing avalanches (Dent et al., 1997; Sovilla et al., 2008) and from chute
experiments suggest that the flow of snow is characterized by a relatively thick layer where
the shear rates dv=dz are low or even zero. This so-called ‘plug layer’ travels on a compara-
tively thin shear layer in which dv=dz> 0. Basal sliding (v.0/> 0) may occur in this shear layer,
depending on the environmental conditions. In avalanche dynamics, rheology is used to denote
the closure scheme of the equations of motion, in terms of a relationship between internal
forces and deformation of the flowing snow. The simplest rheology which can reproduce the
observed snow behaviour is the Bingham rheology (Bingham, 1922; Oldroyd, 1947). However,
Kern et al. (2004) showed that qualitatively better fits can be obtained by using a generalized
Bingham rheology, the so-called Herschel–Bulkley (HB) model (see, for example, Barnes et al.
(1989)).

The equations of the HB model, adapted for our purposes, are presented in Table 1, with a
simple schematic diagram of the main features in Fig. 5. The HB model is described in detail
in Kern et al. (2004); here we outline one particular feature that helps us to identify the set
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Fig. 4. Those experiments with high snow surface temperatures: (a) experiment F, Tss D�4 ıC, Ta D2 ıC,
ρD300 kg m�3; (b) experiment G, Tss D0 ıC, Ta D�2 ıC, ρD660 kg m�3; (c) experiment H, Tss D0 ıC, Ta D
4 ıC, ρ D 660 kg m�3; (d) experiment I, Tss D 0 ıC, Ta D 4 ıC, ρ D 675 kg m�3; (e) experiment J, Tss D 0 ıC,
Ta D�3 ıC, ρD715 kg m�3

of model parameters about which we are uncertain, and for which we can specify a marginal
distribution. The uncertain parameters in the original model are v0, denoting basal slip velocity
(metres per second), τc, the yield stress (pascals) at zero shear rate, α, a unitless exponent (shape
parameter), and K , which enters the stress equation for a positive shear rate:

stress= τc +K

(
dv

dz

)α dv

dz
> 0, .1/

where v.z/ is the velocity profile at height z. K .Pa sα/ is a complicated quantity which has units
that depend on α. This makes it difficult to elicit K : it would be simpler if we could decoup-
le K from α, in such a way that we would be comfortable treating these two quantities as
probabilistically independent. Therefore we reparameterize the stress relationship as

stress= τc

{
1+

(
tc

dv

dz

)α}
dv

dz
> 0, .2/

where tc has units of time (seconds). According to expression (2), tc = .K=τc/
1=α, and tc replaces

K as our fourth uncertain model parameter. Neither K nor tc is well defined physically because
the HB model is a model that, although motivated by physical considerations, is nonetheless
primarily empirical in nature. Our marginal distribution for tc will therefore be largely defined
by its predictive implications (see Section 5).

Model consistent approximate values for the model parameters and model results are given
in Fig. 6 along with the resulting velocity profile.
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Table 1. Velocity profile of a steady two-dimensional HB flow of snow

The velocity profile has the form

v.z/=
⎧⎨
⎩vh + .v0 −vh/

(
1− z

h

).1+α/=α

0� z<h,

vh z�h,
where

vh =v0 + h

tc

α

1+α

(
h

H −h

)1=α

and h solves

τc = .H −h/gρ sin.θ/

subject to h�0, with h=0 otherwise†

Notation
z, height ordinate (m), v.z/, velocity .m s−1/,
h, height to plug layer (m), vh, plug layer velocity .m s−1/

Treated as known
θ, inclination .32◦/, g, acceleration .9:8 m s−2/,
H , height to top of flow .0:4 m/

Environmental variables
ρ, snow density (kg m−3/, Tss, snow surface temperature .◦C/‡

Uncertain model parameters
v0, basal velocity .m s−1/, α, stress coefficient,
τc, yield stress .Pa/ at dv=dz=0 tc, time constant (s)

†Our alterations to the standard notation are described in Section 2. See Fig. 5
for a schematic diagram.
‡The variable Tss does not appear explicitly in the model, but it influences our
judgements about the best value of τc.

Fig. 5. Simple schematic diagram of a typical velocity profile of steady HB flow

3. Outline of the statistical inference

3.1. General features
Our objective is to estimate the velocity profile under different experimental conditions. We
write this velocity profile in the general form v.m, z/, where z indicates height (normal to the
surface) along the velocity profile, which we term the index variable, and m denotes the value of
relevant environmental variables. In our case these variables are

m = .ρ, Tss/,
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Fig. 6. Velocity profile from the following model consistent approximate values for the model param-
eters and results: g , 10 m s�2; H , 0.5 m; sin.θ/, 1

2 ; ρ, 500 kg m�3; Tss, �5 ıC (just for reference); α, 2; v0,
5 m s�1; vh, 10 m s�1; h, 0.1 m; tc, 2

3 �10�2 s; τc, 1000 Pa

where ρ is the snow density and Tss is the snow surface temperature; we also have information
on the atmospheric temperature but we have not used it in this analysis.

We have three sources of information. First, we have the outcome of experiments on the
large chute. These observations include measurement error and are distinguished from the true
results by writing vobs.m, z/. We have 10 experiments, and for simplicity we shall suppose that
we record velocities at the same eight heights for each experiment—in fact not all the heights
were recorded for every experiment: we make this simplification purely to avoid an extra layer
of subscripts. Therefore our observations comprise the matrix

V obs =
⎛
⎝

vobs.m1, z1/ . . . vobs.m1, z8/
:::

: : :
:::

vobs.m10, z1/ . . . vobs.m10, z8/

⎞
⎠, .3/

which is a matrix in which the rows correspond to (potentially) different values for the environ-
mental variables and the columns to the different values for the index variable.

Our second source of information is evaluations of a physical model, namely the HB model
that was described in Table 1. This model can be seen as a function mapping .m, z/ into a
scalar output. But there will be a further set of model inputs, namely those model parameters
about which we are uncertain. This uncertainty has two sources. First, the model contains
semiempirical relationships that stand in for physics that we do not understand, or which we
choose not to represent fully. These empirical relationships may have uncertain coefficients.
Second, deficiencies in the model compromise the interpretation of the model’s parameters,
even those with well-defined physical meanings. For example, the value of shear stress in actual
snow in the chute may not be the best value to use for shear stress in the model. Therefore,
although we are guided by the physical interpretation of the parameters, we do not necessarily
want to fix them at their physical values. These uncertain parameters are denoted x,

x = .v0, τc, α, tc/:

The model output is then denoted g.x, m, z/. Below we shall treat the ‘best’ values of x as
unknown and allow our judgements about these best values to be influenced by the environ-
mental variables m.
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Our third source of information is our judgements about the physical model, the actual behav-
iour of snow in the chute, the observations and the relationships between them. Specifying these
judgements occurs in two stages: first we construct a joint statistical model over all uncertain
and observed quantities, describing our conditional independence choices. Then we quantify
the marginal and conditional distributions that occur in this statistical model. Our choices will
be informed by the physics of snow in large chutes, by the feasibility of the elicitation and by the
tractability of the resulting statistical inference. In this respect constructing a statistical model
is no different from the process of constructing a physical model.

3.2. Statistical framework
For clarity, we start by describing a statistical framework for a single experiment and a single
height, dropping m and z from the notation, and writing g.x/ for the physical model, v for
the actual value and vobs for the observation. The standard approach to constructing a joint
statistical framework is to assert the existence of a ‘best’ value of the model parameters, which
is denoted xÅ (Goldstein and Rougier, 2004, 2006, 2009). Then we link the evaluations of the
physical model and the actual system behaviour through the model that is evaluated at this best
input. We can visualize this in the form of a directed acyclic graph (DAG) (see, for example,
Cowell et al. (1999)), in which the vertices represent uncertain quantities, and the absence of an
edge between vertices indicates an assertion of conditional independence. The DAG in this case
is simply

xÅ g−→v−→vobs .4/

where the only simplification that we have made in the joint structure is to choose vobs ⊥⊥xÅ|v,
which is a completely standard and uncontroversial choice.

The superscript on the edge from xÅ to v indicates the ‘location’ of the HB model in the
inference, but it does not imply that v = g.xÅ/, but simply that the distribution for v will be
expressed conditionally on g.xÅ/. This edge represents our statistical model of the discrepancy
between the model and reality: a typical form of this conditional distribution might be

π.v|xÅ/=ϕ{v; g.xÅ/, σ2.xÅ/} .5/

where ϕ is the Gaussian density function with specified mean and variance, and we specify
the variance σ2.x/ as an explicit function of the model parameters. A common simplification
in equation (5) is to make σ2.x/ invariant to x, i.e. to set σ2.x/ = σ2, which is a scalar. A
regrettable further simplification is to set σ2 = 0, which asserts that the model has no struc-
tural error, and that it is only uncertainty about xÅ that prevents us from performing a perfect
evaluation. This, unfortunately, has been the dominant practice in much applied science, where
practitioners have either not been aware that it is possible to incorporate structural error into
their analysis or have been reluctant to quantify it. This reluctance to quantify can also be
seen in the choice of marginal distribution π.xÅ/, which is often taken to be rectangular
with specified limits. This class of distribution is supposed, mistakenly, to be the ‘neutral’
choice.

The second edge represents our statistical model of the measurement processes: a typical form
for this distribution might be

π.vobs|v/=ϕ.vobs; v, τ2/ .6/

where for simplicity we treat measurement error as invariant to flow speed, and we specify the
size of the error in terms of a standard deviation τ .
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3.2.1. Multiple heights
Generalizing from one value of the index variable height to a collection of heights presents no
conceptual problems. We write DAG (4) as

xÅ g−→ v −→ vobs .7/

where v = .v.z1/, . . . , v.z8// and vobs = .vobs.z1/, . . . , vobs.z8//.
The scalar variance function σ2.x/ in equation (5) is replaced by a more general vectorized

relationship such as

cov{v.zj/, v.zj′/|xÅ}=σ.xÅ, zj/ σ.xÅ, zj′/ κz.zj, zj′/, .8/

where κz.·/ is a correlation function, and for simplicity we treat the correlation structure as
invariant to xÅ. Our judgements of how the physical model’s performance varies according to
both x and z are represented in σ.x, z/. For example, the HB velocity profile comprises two
parts: one for heights below the shear layer height h, and a much simpler (vertical) part for
heights equal to or above h, where h is a known function of x (see Fig. 6). If we judge the simpler
model more likely to be in error, then our σ.x, z/ will be a function of both x and z.

Our judgements about systematic model bias are represented in the correlation function κz.·/.
If, for example, we believe that the model will tend systematically to overpredict or underpredict
velocity across the heights, then we would specify a positive correlation for κz.zj, zj′/, indicating
that vj −g.xÅ, zj/ and vj′ −g.xÅ, zj′/ are likely to have the same sign, particularly if zj and zj′
are proximate. We shall use this representation of systematic model bias in Section 5.3.

In a similar way, the scalar measurement error variance τ2 in equation (6) is replaced by the
matrix T. We need to include common sources of variation in the off-diagonal elements of T.
The dominant source of these is measurements that are made by the same sensor, which might
have a bias. In our large chute, though, there are different sensors at each height, so this is not an
issue. However, the sensors are identical, and so there might be a common source of variation
from a fault that is particular to sensors of this general type. We have not incorporated this
possibility in our analysis below, however, and the matrix T is treated as diagonal.

3.3. Including environmental variables
The purpose of including environmental variables in our framework is to allow us to predict
the behaviour of snow in a chute under environmental conditions that we have not observed.
For this to be possible, we must believe that there is some relationship between v.m/ and v.m′/
where m′ is not dissimilar to m, so that an experiment at m is informative about what happens
at m′.

3.3.1. Explicit single experiment
We start by including the environmental variables explicitly in our statistical model for a single
treatment:

v(m)x* vobsg

m .9/

where the box around m denotes that it is specified, not uncertain. This indicates that our judge-
ments about xÅ, about our physical model’s discrepancy and about the observation error might
all depend on the values of the environmental variables that prevail at the time.
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When we introduce multiple experiments, though, we are faced with a problem. We would like
to abstract the best value of the model parameters from a particular experiment, so that this best
value becomes a generic quantity that is applicable across a range of experiments. However, our
judgements about the best value of the model parameters are influenced by the environmental
variables. The solution is to propose a higher level of model parameters, that are invariant to
the value of the environmental variables. Formally, we suppose that we can specify an uncertain
vector wÅ with marginal density π.wÅ/, and a vector-valued deterministic function x=k.w, m/,
such that k.wÅ, m/ has the distribution π.xÅ; m/, for all m. This gives

m

v(m)x*w* k

k

vobs(m)g

.10/

Here, wÅ is not influenced by m, and xÅ for any particular set of environmental variables is
induced from wÅ and m. Therefore learning about the ‘generic’ model parameters is learning
about wÅ. We shall illustrate judgements of this form in Section 5.1, for the two model parameters
v0 and τc, which will depend on ρ and Tss respectively.

3.3.2. Multiple experiments
To handle multiple experiments we concatenate the actual values of the environmental variables
with the values at which we would like predictions. Denote these latter values as ma, mb, . . . . We
write the collection as

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

v.m1, z1/ . . . v.m1, z8/
:::

: : :
:::

v.m10, z1/ . . . v.m10, z8/

v.ma, z1/ . . . v.ma, z8/

v.mb, z1/ . . . v.mb, z8/
:::

: : :
:::

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

: .11/

In this format, the statistical model over multiple experiments and predictions can be written

wÅ g,k−→V −→V obs .12/

where the different values of m are now internalized in V and V obs. Looking back to DAG (4),
we seem to have come full circle, with the important difference that we have had to redefine
the model parameters to ensure that they can be expressed independently of the environmental
variables.

With this modification, the statistical modelling of the two conditional distributions can be
extended quite naturally from the single experiment. For the discrepancy we might take the
collection {v.mi, zj/|wÅ} to be jointly Gaussian with mean g{k.wÅ, mi/, mi, zj} and variance
function

cov{v.mi, zj/, v.mi′ , zj′/|wÅ}=σ{k.wÅ, mi/, mi, zj} σ{k.wÅ, mi′/, mi′ , zj′}κm.mi, mi′/ κz.zj, zj′/
.13/

where κm.·/ and κz.·/ are correlation functions, and for simplicity we take the joint correlation
structure as invariant to xÅ and separable in the environmental variables and the index variable.
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For the observation error, we might take the collection {vobs.mi, zj/|V} to be jointly Gauss-
ian, and simplify by treating vobs.mi/ as conditionally independent of v.mi′/ given v.mi/, with
mean v.mi/, and variance function

cov{vobs.mi, zj/, vobs.mi′ , zj′/|V}=
{

Tjj′ i= i′,
0 otherwise:

.14/

3.4. Summary of statistical requirements
We summarize the statistical requirements that were described in this section, under the sim-
plifications we have made. Note that the simplifications are not critical: we have made them to
clarify the presentation, and also because they seem reasonable in our application and, perhaps,
more widely. More importantly, the Gaussian form of the conditional distributions is not critical
either. In fact, in the following sections we shall dispense with it and proceed by using a Bayes
linear approach.

(a) We specify the deterministic function k.·/ and the marginal distribution wÅ so that the
inferred marginal distribution of xÅ =k.wÅ, m/ is consistent with our judgements about
xÅ with environmental variables m.

(b) We quantify our judgement about the discrepancy in our physical model in terms of the
standard deviation function σ.x, m, z/, and the two correlation functions κm.m, m′/ and
κz.z, z′/; see equation (13).

(c) We quantify our judgements about the measurement errors in our observations in terms
of the variance matrix T ; see equation (14).

4. Bayes linear inference

Our intention is to predict velocities at values for the environmental variables that we have not
observed. To make this more concrete, in this paper we shall predict the velocity for a range of
densities and snow surface temperatures. If we want to predict on, say, a 21 × 21 grid in these
two variables then V will have 10+212 rows and eight columns, i.e. it will comprise about 3600
components. Therefore this is quite a large inference. At the same time, though, we are aware
that our data, although the best of their kind, are noisy, and our physical model is rather simple.
Therefore our judgements will play a large part in our predictions. This prioritizes diagnostic
information. It also makes us cautious about putting more structure in our judgements than
we would willingly specify. For these reasons we strongly favour a Bayes linear analysis. The
Bayes linear approach is outlined in Goldstein (1999) and described in detail in Goldstein and
Wooff (2007); it has proved very powerful in large computer experiments (Craig et al., 1997,
2001; Goldstein and Rougier, 2006). It also underpins standard techniques such as dynamic
linear models (West and Harrison, 1997), which are also known as the Kalman filter.

In the Bayes linear approach, expectation is taken as primitive and judgements are specified
in terms of the mean and variance of a collection of quantities. Therefore we are not required to
make higher order specifications, in contrast with the fully probabilistic approach. The resulting
updating equations have a simple form that allows rapid computation, including of diagnostic
information. Our predictions take the form of a mean vector and a variance matrix over the
product of our specified values for the experiments ma, mb, . . . and the abscissae of the velocity
profile.

To implement the Bayes linear approach for prediction we must specify a mean and variance
over the collection {V , V obs}. If we want to do model calibration we must also include wÅ in
that collection. Calibration is more complicated in a Bayes linear framework, because of the
strong non-linearities that can exist between wÅ and V , induced mainly by non-linearities in
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the physical model g.·/. The Bayes linear approach to calibration is described in Goldstein and
Rougier (2006). In this paper we shall focus on prediction, using the approach that was described
in Craig et al. (2001).

We can write our statistical model in the general form

V ≡GÅ +DÅ, .15a/

V obs ≡V +E .15b/

where GÅ is the collection of model evaluations with typical component g.xÅ, mi, zj/, DÅ is the
collection of discrepancies with typical component

d.xÅ, mi, zj/=v.mi, zj/−g.xÅ, mi, zj/ .15c/

and E is the collection of measurement errors with typical component

e.mi, zj/=vobsv.mi, zj/−v.mi, zj/: .15d/

Weinduceameanandvarianceonthecollection{V , V obs} in termsofourchoices for{GÅ,DÅ,E}.
According to our choices in Section 3.1, E⊥⊥{GÅ, DÅ} has mean 0, and variance given by equa-
tion (14). DÅ and GÅ, however, covary, because they share a common source of uncertainty,
namely xÅ. Including this covariance is a challenge for the Bayes linear approach. We judge
that our purpose is better served by removing the dependence of DÅ on xÅ. In fact, this is the
standard approach in computer experiments where, as far as we are aware, no analysis has yet
included the influence of the model parameters on the model’s discrepancy, not even in a fully
probabilistic approach; see, for example, the standard set-up in Kennedy and O’Hagan (2001)
and the discussion in Rougier (2007). In our statistical model this means removing the effect
of x from the standard deviation function σ.x, m, z/, used in equation (13); we shall show in
Section 5.3 how the lack of x can be partially mitigated through the creative use of m. Now we
have E⊥⊥GÅ ⊥⊥D, where we have dropped the asterisk on D.

An alternative way of viewing the probabilistic independence between GÅ and D is as an iden-
tification constraint, which helps us to generate judgements about V in two parts: judgements
about the best input xÅ, and judgements about the discrepancy D. This separation makes judge-
ments more transferable between inferences, since it is then possible to focus on one or other
of xÅ and D. Having said that, there are some concerns about whether it is coherent to treat
xÅ and D as independent, which is discussed in Goldstein and Rougier (2009): at the moment,
though, these concerns have not impacted on current practice (see the ensuing discussion and
rejoinder in Goldstein and Rougier (2009)).

With this simplification we can write the joint mean and variance as

E

(
V

V obs

)
=

(
μÅ

HμÅ

)
, .16a/

var
(

V

V obs

)
=

(
Ξ ΞHT

HΞ HΞHT +var.E/

)
.16b/

where H is the incidence matrix, which picks out the observations, Ξ= var.V /=ΣÅ + var.D/

and μÅ and ΣÅ are the mean and variance of GÅ. This still leaves us to determine the mean and
variance of GÅ. For this we find it helpful to specify a probability distribution for wÅ, and then to
infer μÅ and ΣÅ by using samples drawn from GÅ. This is a cheap calculation in our application
because the physical model is quick to evaluate; where the physical model is expensive we would
use an emulator (see, for example, O’Hagan (2006) and Rougier (2008)). This approach is not
simply a case of estimating μÅ and ΣÅ, though. Our initial choice for the distribution π.wÅ/ will
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be informed by our judgements, but we are likely to tune this choice in the light of the implied
mean and variance for GÅ and, possibly, to modify the resulting mean and variance in the light
of other judgements. This is particularly so for tc which, as we observed in Section 2, is a model
parameter without a natural analogue. Thus the distribution π.wÅ/ is a contrivance that helps
us to specify μÅ and ΣÅ, rather than a core part of our inference.

The scheme for adjusting our mean and variance for V on the basis of the observed value
for V obs is described in Goldstein and Wooff (2007), chapter 3. The updating equations will
be familiar because they are also the conditioning relationships of a multivariate Gaussian
distribution. However, as already explained, we have adopted the Bayes linear approach partly
because of our reluctance to provide fully probabilistic descriptions of our uncertainty, and
therefore we do not judge .V , V obs/ to be Gaussian; nor shall we be using the extra structure
that this would imply in our predictions. For example, our predictions are explicitly in terms of
means, variances and covariances: we cannot report quantiles without further restrictions.

5. Statistical modelling and results

5.1. Model parameters
In this subsection we specify wÅ, the function k.·/ and the marginal distribution π.wÅ/, as
described in Section 3.3. Recall from Section 3.1 that x = .v0, τc, α, tc/ and m = .ρ, Tss/. The
outline in this subsection is of necessity a very partial description of the way in which we arrived
at our quantification. We deliberated for many hours, knowing that our choices would be influ-
ential in the predictions. We started with simple choices for each of the uncertain quantities and
then gradually iterated towards a joint choice. Throughout we were guided by the diagnostic
plots that are given in Section 5.4.

First we consider the dependence of vÅ
0 on ρ, which appears to be a feature of our observations.

For snow in the coexistence regime of snow and water at 0 ◦C, snow density and snow water
content are typically positively related. High water content causes additional basal friction
by lubrication–adhesion effects on the ground, especially if the flow is water dominated, as in
slush flows (Jaedicke et al., 2008). Compact (ρ>300 kg m−3) dry snow exhibits slightly less basal
friction on dry ground. In contrast, for low snow densities (ρ � 300 kg m−3), a lower ratio
between gravitational forces and basal friction may contribute to slower basal slip velocities:
low snow densities are frequently associated with a fine-grained snow structure which may result
in a higher effective basal friction coefficient. We judge that these two effects will probably
combine in a concave relationship between ρ and vÅ

0 over our range of densities.
Second, we consider the dependence of τc on Tss. Foehn et al. (1998) and Schweizer (1998)

observed that τc depends both on the snow temperature and on the applied shear rate. For our
HB flow, τc is the threshold stress for failure of the plug at z = h where the shear rate dv=dz

vanishes (under our experimental conditions, this transition from shear flow to plug flow might
not be perfectly smooth). We assign a value to τc approximately matching this model definition
by using the experimental results for τc under very low shear rates, of the order dv=dz∼10−3 s−1.
Under these conditions, τc is decreasing with increasing temperature.

Appendix A outlines a simple approach for quantifying both of these dependences in terms of
some basic elicitations. In summary, we restrict the form of the dependence to a quadratic equa-
tion with uncertain coefficients, and then we constrain the mean and variance of the coefficients.
In the case of the basal slip velocity vÅ

0 .m s−1/, our constraints are

(a) E.vÅ
0 ;ρ=250 kg m−3/=4:6 m s−1 and E.vÅ

0 ;ρ=800 kg m−3/=2:5 m s−1,
(b) an extremum at ρ=400 kg m−3 and
(c) Pr.concave/=0:95.



750 J. Rougier and M. Kern

300 400 500
Snow surface temp (Tss, °C)

(a) (b)

600 700

0
2

4
6

8

−15 −10 −5 0

80
0

12
00

16
00

V
el

oc
ity

 (
v 0

*,
 m

 s
–1

)

Density (r, kg m–3)

Y
ie

ld
 s

tr
es

s 
(t

c*
, P

a)

Fig. 7. Realizations of the stochastic relationship between the environmental variables and the best value
of the model parameters: (a) basal slip velocity; (b) yield stress

In the case of the yield stress τÅ
c .Pa/, our constraints are

(a) E.τÅ
c ; Tss =−15 ◦C/=1150 Pa and E.τÅ

c ; Tss =−4 ◦C/=950 Pa,
(b) an extremum at Tss =1 ◦C and
(c) Pr.concave/=0:05.

In each case we have one free statistical parameter with which to tune our choices, and we
choose σ0 =0:7 m s−1 for vÅ

0 and σ0 =100 Pa for τÅ
c (σ0 is defined in Appendix A). The results

are shown in Fig. 7, as realizations of the random functions. In fact, these realizations were
our primary tool in setting the constraints and the free parameter to achieve a distribution of
random functions that reflected our judgements.

Finally, we consider αÅ and tÅc . We found these the most difficult to quantify. For αÅ, inspec-
tion of the second equation in Table 1 indicates that all values in the range [0, ∞/ are acceptable.
Therefore we choose an exponential distribution with mean 2. For tÅc , however, values that are
too close to 0 give plug layer velocities vh that are too high. Therefore we selected a lower limit
for tÅc on the basis of an upper limit for vh. A high value for vh is associated with a thick shear
layer, and the thickest shear layer that we expect is 0.15 m, with ρ=700 kg m−3 and τÅ

c =900 Pa.
If we set the upper limit for vh at 15 m s−1, then this translates into a lower limit for tÅc of 0.01 s.
Therefore we choose an exponential distribution for tÅc −0:01, with a mean of 0.01.

It is interesting to note that this lower limit for tÅc is actually higher than the value that we
used in Fig. 6, demonstrating that introducing uncertainty into our reasoning about model
parameters can lead to conclusions that are inconsistent with results from a simpler ‘plug-in’
approach.

To summarize, our w has the form

w = .β0, β1, β2, γ0, γ1, γ2, α, tc/ .17/

and our function k satisfying x =k.w, m/ is

k.w, m/=

⎧⎪⎨
⎪⎩

β0 +β1ρ+β2ρ
2 .=v0/,

γ0 +γ1Tss +γ2.Tss/
2 .= τc/,

α,
tc

.18/

where β = .β0, β1, β2/ and γ = .γ0, γ1, γ2/ are random coefficients that are used to represent
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the functional relationships described above and in Appendix A. We treat βÅ, γÅ, αÅ and tÅc as
probabilistically independent.

5.2. Observation error variance matrix
We treat the observation errors as uncorrelated and use pooled estimates for the variances,
based on whether Tss �−2 ◦C. There are simple physical reasons for thinking that the accuracy
of the measurements will depend on temperature. At a snow temperature of 0 ◦C, snow is in
the phase transition regime, i.e. both snow and water are present in the flow. The measurement
principle of the velocity sensors is based on a correlation analysis of signals that are obtained
from infrared reflectivity sensors. The quality of the signal is a function of the water content of
the snow: the ambient water blurs the signal peaks that are related to passing snow particles.
Moreover, the transition spectrum of fluid water has a gap in the infrared band that is used for
the reflectivity measurements, which causes the water film between snow particles and sensor
to dampen the signals. For a detailed discussion of this technical problem, see Guenther (2006).
Strictly speaking, fluid water is present only for Tss =0 ◦C. But, since Tss was not measured in the
snow chute but in a nearby study plot, we use the slightly lower value of −2 ◦C. The estimated
standard deviations are 0:536 m s−1 for the low temperatures, and 1:670 m s−1 for the high
temperatures. Note that this cut-off assigns experiment F to the low temperature group, which
is consistent with the measurement uncertainties that are shown in Figs 3 and 4.

5.3. Discrepancy variance matrix
5.3.1. Standard deviation function
We would like to express the standard deviation of d.xÅ, mi, zj/, which is denoted σ.xÅ, mi, zj/

in general, as a two-level function of h and z:

σ.xÅ, m, z/=
{

σl z<h,
σu z�h,

.19/

as explained in Section 3.2. From the third equation in Table 1,

h=H − τc

gρ sin.θ/
.20/

and so h depends on both τÅ
c ∈{xÅ} and ρ∈{m}. However, as explained in Section 4, for trac-

tability we choose to exclude xÅ from σ.·/. But, since h is linear in τc and the expectation of τÅ
c

depends on m, we can express E.h; m/ as a function of m. Thus we replace h in expression (19)
with its expectation, to give

σ.m, z/=
{

σl z<E.h; m/,
σu z�E.h; m/.

.21/

We choose the values σl =1:0 m s−1 and σu =1:5 m s−1.

5.3.2. Correlation functions
We choose to treat κm.·/ as separable in ρ and Tss, so that

κm.m, m′/=κρ.ρ, ρ′/ κt.Tss, T ′
ss/: .22/

We treat both correlation functions as stationary and use the Matérn family. In each case we use
the same roughness parameter, ν =5=2, reflecting our judgement that none of the relationships
is particularly smooth. In this case the Matérn correlation function has the form
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κ.d; l/=
(

1+ d
√

5
l

+ 5d2

3l2

)
exp

(−d
√

5
l

)
.23/

where d is Euclidean distance and l is a scale parameter that sets the correlation length (see, for
example, Rasmussen and Williams (2006), chapter 4). The expected number of upcrossings of
zero in the unit interval for this correlation function is u=√

.5=3/.1=2πl/, which allows us to
choose l in an intuitive manner, by thinking about the typical size of regions of the input space
where the model consistently overpredicts or underpredicts, which can be translated into the rate
of upcrossings on a per-input basis. We choose the scale parameters to give one upcrossing, on
average, over the intervals Tss ∈ [−15, 0] ◦C and ρ∈ [300, 700] Pa. One upcrossing gives sample
paths that are ‘quadratic’, indicating a typical region size of half the total width.

We must also specify the correlation function κz.·/, which represents our judgements about
systematic effects in the model bias, as explained in Section 3.2. If we were to chooseκz.zj, zj′/=0
for j �= j′, then we would be asserting that there was no systematic bias. We believe that there is
a systematic bias, and so we use a Matérn correlation function for κz.·/, with a scale parameter
chosen to give half an upcrossing, on average, over the interval z∈ [0, 15] cm. This difference in
the expected number of upcrossings compared with κρ.·/ and κt.·/ reflects our judgement that
the discrepancy is more systematic in z than in the two environmental variables. Quantifying
these correlation lengths is not easy, but in our case the variance in V is dominated by variance
in GÅ, and so these choices are not critical.

5.3.3. Conditioning at zero height
We make one further modification to the variance matrix var.D/. One of the model inputs is v0,
the basal slip velocity. This is also one of the outputs, corresponding to z= 0. We identify this
input and output by conditioning d.m, z/ on d.m, 0/=0 for all .m, z/; in practice we condition
on d.mg, 0/ = 0 for all mg in a dense regular grid. After this modification, the only source of
uncertainty about v.m, 0/ is .vÅ

0 ; m/.

5.4. Diagnostics and remodelling
5.4.1. Prior predictive mean and standard deviation
It is difficult for us to make judgements about the marginal distribution π.wÅ; m/ directly,
because the semiempirical nature of our physical model means that the quantities wÅ and xÅ

are not operationally defined. Therefore, we make these judgements partly indirectly, by examin-
ing their implications for the velocity profile at different values of the environmental variables,
which is operationally defined. The velocity profile at any particular m will be an uncertain
quantity that synthesizes the HB model and our statistical choices. We treat the HB model as
inviolate, so that, if the velocity profile does not accord with our judgements, then we need to
change the marginal distribution of wÅ, the mapping function k.·/ or the variance function of the
discrepancy. Once the velocity profile looks about right (a more formal criterion is not possible
here), we know at least that our judgements on the two domains, wÅ and v.m, z/, are consistent.

Fig. 8 shows our main prior predictive summary diagnostic: the mean and standard deviation
for the velocity profile in a 3×3 layout of snow densities and snow surface temperatures. Each
panel shows both the total uncertainty and, inside that, the uncertainty that is attributable to
uncertainty in the model parameters: the difference is uncertainty that is attributable to the
discrepancy. The first source of uncertainty dominates, more so at higher densities. To us these
figures ‘look right’, both in terms of the qualitative structure (e.g. stronger shearing at higher
snow densities, especially for higher temperatures), and also in terms of the means and standard
deviations. The prior standard deviations are large, but that is to be expected when we are
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Fig. 8. Prior predicted velocities on a 3�3 grid in snow density (horizontal) and snow surface temperature
(vertical), mean ˙ 2 standard deviations (the share that is attributable to uncertainty in the model param-
eters is shown by the ticks inside each error bar, with the rest being due to the discrepancy between the
model and actual snow behaviour): (a) TssD�3 ıC, ρ D 350 kg m�3; (b) Tss D �3 ıC, ρ D 500 kg m�3; (c)
Tss D �3 ıC, ρ D 650 kg m�3; (d) Tss D �7 ıC, ρ D 350 kg m�3; (e) Tss D �7 ıC, ρ D 500 kg m�3; (f) Tss D
�7 ıC, ρD650 kg m�3; (g) Tss D�11 ıC, ρD350 kg m�3; (h) Tss D�11 ıC, ρD500 kg m�3; (i) Tss D�11 ıC,
ρD650 kg m�3

predicting such a complicated system on the basis of such a simple model. We used this diag-
nostic mainly in setting the marginal distribution for wÅ, as described in Section 5.1.

5.4.2. Joint structure
Fig. 8 summarizes the marginal structure of our judgements, i.e. taken pointwise at different
values for the environmental variables. Our judgements about the joint structure are much less
well formed: certainly not sufficiently well formed that we might use them as the basis for further
adjustments to our choices for the marginal distribution of wÅ. However, it is still interesting to
see what our choices and the HB model imply for the covariance of velocities over the treatment
space.

For simplicity, we restrict attention to a single height, z=0:4 m. The velocity v.m, 0:4/ is the
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velocity of the plug layer, vh. From the second equation in Table 1, this is a linear function of v0
and a non-linear function of τc (through h; see the third equation in Table 1), α and tc. Therefore
our uncertainty about vh will be affected by both of the environmental variables, since ρ affects
h directly and vÅ

0 indirectly, and Tss affects τÅ
c indirectly. To visualize the joint structure of this

uncertainty, we compute the spectral decomposition of the variance matrix of vh over a high
resolution grid in the two environmental variables and plot the first four eigenvectors: Fig. 9.

The first eigenvector accounts for about 50% of total variation and describes uncertainty
about the general height of the function, without much differentiation according to the values
of the two environmental variables. The second eigenvector (about 20%) describes the tilt of the
function along a fulcrum that is roughly parallel to the temperature axis, and the third eigenvec-
tor (about 5%) picks out the high density–low temperature corner (this is the least likely corner
in practice). All the remaining eigenvalues are quite small.

From the point of view of experimental design, we conclude that experiments with extreme
values of snow density would be more valuable at reducing uncertainty over the range of the
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Fig. 9. First four eigenvectors of the prior predicted plug layer velocity variance matrix (the grey scale indi-
cates absolute size and the dots indicate positive values): (a) first eigenvector, proportion of variance 56%; (b)
second eigenvector, proportion of variance 16%; (c) third eigenvector, proportion of variance 5%; (d) fourth
eigenvector, proportion of variance 3%
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environmental variables than those with extreme values of snow surface temperature. This
accords with our intuition that density plays a larger role than temperature. But note the caveat
that a quarter of the total variation is made up of many small contributions. Therefore many
experiments will be required to reduce uncertainty substantially everywhere: certainly more than
the 10 experiments that we currently have.

5.4.3. Leave-one-out diagnostic
For our observation-based diagnostic we use leave-one-out plots. For each experiment in turn,
we predict the observations by using the outcome of the other nine experiments, and we compare
the prediction with the actual observations. Each prediction takes the form of a mean vector and
a variance matrix; therefore we transform the joint prediction errors so that they ought to have
mean 0 and standard deviation 1 and be uncorrelated, using the pivoted Cholesky approach that
was described by Bastos and O’Hagan (2009). In our case these standardized joint prediction
errors look quite similar to the standardized marginal prediction errors (which are not shown),
because the variance matrix is roughly diagonal; experiment F has the largest difference, which
is consistent with its unique position in Fig. 2. The resulting diagnostics for each experiment
are shown in Fig. 10.
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Fig. 10. Leave-one-out diagnostic (the observations for each experiment in turn are predicted by using
observations from the other nine; the prediction errors from each experiment are standardized so that they
ought to have mean 0 and standard deviation 1, and to be uncorrelated, using the pivoted Cholesky approach
of Bastos and O’Hagan (2009)): (a) experiment A; (b) experiment B; (c) experiment C; (d) experiment D; (e)
experiment E; (f) experiment F; (g) experiment G; (h) experiment H; (i) experiment I; (j) experiment J
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This is not the first such plot that we made, as we have permitted ourselves a small amount
of tuning of this diagnostic, mainly in the choices of the discrepancy standard deviations σl
and σu (equation (21)), and the scale parameters in the correlation functions (equation (23)).
Although the location and spread of the standardized prediction errors is broadly satisfactory,
there is clearly a systematic effect across the experiments, and also across height within several
of the experiments, which would not be present if the physical and statistical modelling were
entirely consistent with the observations. However, we judge these deviations to be tolerable
for our application. Where more care is required, we could revisit our distributional choices,
or we could generalize the statistical framework from the ‘best input’ to the ‘reified modelling’
approach (Goldstein and Rougier, 2009).

6. Results

Our main interest is in the velocity profile across a range of values for the two environmental
variables. For simplicity, we restrict attention to the velocity of the plug layer (i.e. z=0:4 m). We
present both our prior assessment and our assessment after adjusting by the observations from
the 10 experiments. The results are given in Figs 11 and 12. Each figure shows the mean function,
represented in terms of grey scale and contours, and also an indication of the pointwise standard
deviation, in terms of the size of the grey boxes: details are given in the caption to Fig. 11.

In Fig. 11, the prior mean field shows that snow density is more important than snow surface
temperature, but that there is an interaction between the two, so that temperature is much more
influential when density is high. The mean and standard deviation functions are flat for densities
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Fig. 12. Adjusted predictive mean and standard velocity at a height of 0.4 m; compare with Fig. 11

below about 500 kg m−3. The prior standard deviations range from 2.2 m s−1 (low density, low
temperature) to 3.6 m s−1 (high density, high temperature).

In Fig. 12, the most noticeable effect of adjusting by the observations from our 10 experiments
is that the mean field has increased by about 1 m s−1 everywhere and the standard deviation
has decreased everywhere; the interaction between high density and high temperature is also
slightly more pronounced. This is consistent with the spectral analysis of the prior variance,
which indicated that the overall level of the function was the dominant source of uncertainty.
The spectral analysis also explains why uncertainty is reduced in the top left-hand and bottom
right-hand corners, despite our having no experiments in these regions: the first two eigenvec-
tors indicate that the experiments that we have are informative for these regions. The adjusted
standard deviations have been reduced to the range 1.5–2.2 m s−1. The reduction in uncertainty
is most pronounced for high density and high temperature, where the standard deviation has
fallen by 1.4 m s−1.

7. Conclusion

In this study we have extended the ‘standard’ approach to model-based inference for complex
physical systems to multiple experiments. This involves introducing an explicit role for the
environmental variables in the assessment of the model’s discrepancy with reality, and also
in the observation process. In our analysis of 10 chute experiments using the HB model the
environmental variables described environmental conditions, namely snow density and snow
surface temperature. We incorporated the effect of these into the variance function of the model
discrepancy, where density affected the height of the shear layer, which interacted with the
output index variable, height. We also incorporated them into the observation error, to account
for the larger observation errors that arise when the snow is close to melting.



758 J. Rougier and M. Kern

In general the value of the environmental variables can also affect our judgement about
the ‘best’ value of the model parameters. This requires a transformation of the model param-
eter space; put simply, we must construct ‘hyper-model-parameters’ that are uncertain and
independent of the environmental variables. These hyperparameters are the quantities in which
information from experiments under different values for the environmental variables is com-
bined. For the HB model we required two sets of such hyperparameters: to account for the effect
of density on basal slip velocity, and temperature on yield stress. In both cases they took the
form of uncertain coefficients in quadratic equations. Hyperparameters are commonly used in
hierarchical statistical modelling, but this is, to our knowledge, the first time that they have been
used in this way in a computer experiment with a physical model.

Throughout our analysis we have made judgements about the HB model and the statistical
framework linking model parameters, model evaluations, actual snow behaviour and observa-
tions. These types of judgements are never easy and can be contentious. But one of the great
advantages of a Bayesian analysis is that it forces us to quantify our judgements in a trans-
parent manner, to facilitate discussion, and—in due course—revision. We have used various
methods for quantifying our judgements, including a novel but effective way of specifying sim-
ple uncertain functions. We have validated these judgements, collectively, in an assessment of
prior predictive means and variances, and in a leave-one-out diagnostic analysis. They remain,
however, our judgements, and we do not expect that they will meet the approval of all statisticians
and snow experts.

From a practical point of view, our results show how we can generalize the HB model to
allow for environmental conditions, and thereby extend the prediction range of the model to
environmental conditions that have not been observed. In this study we have focused on chute
experiments, but our long-term goal is to construct better avalanche hazard maps, which are
based on numerical modelling of avalanche velocity and run-out length. At the heart of these
models are empirical rheology models which are similar to the HB model that was considered
here. However, in current practice the discrepancy between these models and actual avalanche
behaviour is never formally accounted for, and information on the snow cover properties (e.g.
density and temperature) is underused; both of these create uncertainty in the resulting hazard
maps. The approach that was described here allows us to quantify these uncertainties and should
lead to a more time- and site-specific approach to avalanche hazard estimation, by considering
the local temporal and spatial properties of the snow cover in the avalanche release zones. Many
more variables would have to be taken into account (topography properties, erosional prop-
erties and spreading in three-dimensional avalanche flow). But we are convinced that this is a
necessary and feasible task for future development of avalanche hazard management tools.
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Appendix A: Imposing constraints on random quadratic functions

Suppose that we have a random function
y =α0 +α1 x+α2 x2 .24/
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where α= .α0, α1, α2/ is an uncertain vector subject to the following constraints:

(a) E.y; x=x1/=y1, and E.y; x=x2/=y2, where x1 �=x2;
(b) y has an extremum at xe with probability 1, where xe �= .x1 +x2/=2;
(c) y is concave with probability p;
(d) α0 and α1 are independent;
(e) α is multivariate normal.

These conditions may or may not be consistent. Suppose that they are. Then the mean vector and variance
matrix of α are completely determined by one additional value, or free parameter: the standard deviation
of α0.

First, condition (e) implies that we need only to consider the mean and variance of α. Then condition
(b) implies that we must have α1 +2α2 xe =0, which constrains both the mean and the variance of .α1, α2/.
Thus the three components of the mean vector must satisfy three linear constraints, given by constraints
(a) and (b): (

1 x1 x2
1

1 x2 x2
2

0 1 2xe

)(
μ0
μ1
μ2

)
=
(

y1
y2
0

)
: .25/

The conditions x1 �=x2 and xe �= .x1 +x2/=2 ensure that the square matrix is non-singular.
Consider the case xe �= 0. Then α2 =−α1=2xe, so if we specify the variance matrix of {α0, α1} then we

induce a variance matrix for α. By constraint (d), α0 and α1 are independent, and so we need to specify
only the two standard deviations. One of these is the free parameter σ0 = Sd.α0/. The other, σ1, controls
the probability that y is concave, or, equivalently, the probability that α2 is negative:

Pr.α2 < 0/=Pr.−α1=2xe < 0/=
{Pr.α1 < 0/ xe < 0,

Pr.α1 > 0/ xe > 0:
.26/

In the first case we have σ1 =−μ1=Φ−1.p/, where Φ−1.·/ is the quantile function for the standard normal
distribution, using constraints (c) and (e) again, and in the second case σ1 =−μ1=Φ−1.1 − p/. The con-
straints are consistent if σ1 > 0.

In the case where xe = 0, we must have μ1 = σ1 = 0. In this case Pr.α2 < 0/ = Φ.−μ2=σ2/, and σ2 =
−μ2=Φ−1.p/. The constraints are consistent if σ2 > 0.

References

Barnes, H. A., Hutton, J. F. and Walters, K. (1989) An Introduction to Rheology. Amsterdam: Elsevier.
Bastos, L. and O’Hagan, A. (2009) Diagnostics for Gaussian Process emulators. Technometrics, 51, 425–438.
Bingham, E. C. (1922) Fluidity and Plasticity. New York: McGraw-Hill.
Cowell, R., Dawid, A., Lauritzen, S. and Spiegelhalter, D. (1999) Probabilistic Networks and Expert Systems.

New York: Springer.
Cox, D. R. (1958) Planning of Experiments. New York: Wiley.
Craig, P., Goldstein, M., Rougier, J. and Seheult, A. (2001) Bayesian forecasting for complex systems using

computer simulators. J. Am. Statist. Ass., 96, 717–729.
Craig, P., Goldstein, M., Seheult, A. and Smith, J. (1997) Pressure matching for hydrocarbon reservoirs: a case

study in the use of Bayes Linear strategies for large computer experiments (with discussion). In Case Studies in
Bayesian Statistics III (eds C. Gatsonis, J. Hodges, R. Kass, R. McCulloch, P. Rossi and N. Singpurwalla), pp.
37–87. New York: Springer.

Dent, J., Burrel, K., Schmidt, D., Louge, M., Adams, E. and Jazbutis, T. (1997) Density, velocity and friction
measurements in a dry snow avalanche. Ann. Glaciol., 26, 247–252.

Foehn, P., Camponovo, C. and Kruesi, G. (1998) Mechanical and structural properties of weak snow layers
measured in situ. Ann. Glaciol., 26, 1–6.

Goldstein, M. (1999) Bayes linear analysis. In Encyclopaedia of Statistical Sciences (ed. S. Kotz), update vol. 3,
pp. 29–34. London: Wiley.

Goldstein, M. and Rougier, J. (2004) Probabilistic formulations for transferring inferences from mathematical
models to physical systems. SIAM J. Scient. Comput., 26, 467–487.

Goldstein, M. and Rougier, J. (2006) Bayes linear calibrated prediction for complex systems. J. Am. Statist. Ass.,
101, 1132–1143.

Goldstein, M. and Rougier, J. (2009) Reified Bayesian modelling and inference for physical systems (with discus-
sion). J. Statist. Planng Inf., 139, 1221–1239.

Goldstein, M. and Wooff, D. (2007) Bayes Linear Statistics: Theory & Methods. Chichester: Wiley.



760 J. Rougier and M. Kern

Guenther, G. (2006) Optimierung optischer Geschwindigkeitssensoren für slushflows. Technical Report. Swiss
Federal Institute for Snow and Avalanche Research, Davos.

Jaedicke, C., Kern, M., Gauer, P., Baillifard, M. and Platzer, K. (2008) Chute experiments on slushflow dynamics.
Cold Reg. Sci. Technol., 51, 156–167.

Kennedy, M. C. and O’Hagan, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Statist.
Soc. B, 63, 425–464.

Kern, M., Tiefenbacher, F. and McElwaine, J. (2004) The rheology of snow in large chute flows. Cold Reg. Sci.
Technol., 39, 181–192.

McElwaine, J. and Tiefenbacher, F. (2005) Calculating internal average velocities from correlation with error
analysis. Surv. Geophys., 24, 499–524.

O’Hagan, A. (2006) Bayesian analysis of computer code outputs: a tutorial. Reliab. Engng Syst. Safty, 91, 1290–
1300.

Oldroyd, J. G. (1947) A rational formulation of the equation of plastic flow for a Bingham solid. Proc. Camb.
Phil. Soc., 43, 100–105.

Rasmussen, C. and Williams, C. (2006) Gaussian Processes for Machine Learning. Cambridge: MIT Press. (Avail-
able from http://www.GaussianProcess.org/gpml/.)

Rougier, J. (2007) Probabilistic inference for future climate using an ensemble of climate model evaluations. Clim.
Change, 81, 247–264.

Rougier, J. (2008) Efficient emulators for multivariate deterministic functions. J. Computnl Graph. Statist., 17,
827–843.

Schweizer, J. (1998) Laboratory experiments on the shear failure of snow. Ann. Glaciol., 26, 97–102.
Sovilla, B., Schaer, M., Kern, M. and Bartelt, P. (2008) Impact pressures and flow regimes in dense snow avalanches

observed at the Vallée de la Sionne test site. J. Geophys. Res., 113, F01010.
Tiefenbacher, F. and Kern, M. (2004) Experimental devices to determine snow avalanche basal friction and

velocity profiles. Cold Reg. Sci. Technol., 38, 17–30.
West, M. and Harrison, J. (1997) Bayesian Forecasting and Dynamic Models, 2nd edn. New York: Springer.


