

Climate model-based probabilistic wind risk assessment under future climate

Kazuyoshi Nishijima

Associate Professor of Engineering Decision Analysis CERDA

DTU Civil Engineering Department of Civil Engineering

CERDA – Areas and current focuses

Structural reliability theory

- Bayesian networks
- Scaled probability integral

Natural hazard risks

- Wind hazard
- Wind vulnerability
- Flood vulnerability

Decision analysis

- Real-time decision optimization
- Reliability in economics
- Life safety

Climate change

- Assessment
- Adaptation

Question to answer

Wind-induced residential building risk increases?

Inputs

Hazard modeling

- AGCM simulation results within the KAKUSHIN program
- Probabilistic modeling methodology for typhoon events

Fragility modeling

- Damage report for the typhoon Songda in 2004
- Wind field simulated with JMA-NHM and JMA-RANAL/JMA-RSM

Hazard modeling

Extracted typhoons

Current climate: 1979-2003

Projected future climate: 2075-2099

Not enough typhoons for risk assessment...

 \rightarrow Monte Carlo simulation with probabilistic typhoon model!

Probabilistic modeling of typhoon events

Occurrence model

• Re-sampling

Transition model

• Temporary spatially inhomogeneous Markov model

- Translation speed
- Translation angle
- Central pressure
- Radius of maximum wind speed

Wind field model

• Wind field at gradient height

Given

- Central pressure
- Translation speed/angle
- Radius of maximum wind speed

Wind speed [m/s]

Bristol/Cuber Di na Workenop 10,00,201

Simulated surface wind speed

• Maximum wind speeds during a typhoon event

Monte Carlo simulation

Fragility modeling

Reported damage ratio of residential buildings

(# of damaged buildings)

(# of total buildings)

Damage ratio

(Degree of damage is not differentiated.)

Tomokiyo et al. (2009)

Computation of wind field by Songda

- Japanese 25-year Reanalysis (JRA-25)
- JMA Non Hydrostatic Mesoscale Model (JMA-NHM)

Large scale 5km mesh

Small scale 1km mesh

Computed wind field and pressure fields

Combining these

Fragility model

Hazard assessment

• Change of annual maximum wind speed statistics

The answer

(Projected future climate) = 0.87^*

(Current climate)

* Simple average over 2249 locations in Japan

32 **DTU Civil Engineering, Technical University of Denmark**

Are you happy?

(1) Improved fragility/vulnerability model

Design wind speed: around 30-35m/s in main Japanese islands

• A failure mode

• Hybrid (statistical + engineering) approach

(1) Improved fragility/vulnerability model

(2) Improved wind field model

Thank you for your attention!