## Picarro Green House Gas (GHG) analyzers



- Chosen by the world's most discerning scientists and accepted across federal and state agencies
- Featuring real-time continuous data streamed directly to your network
- Designed for easy deployment in remote locations
- Ruggedly built to require minimum maintenance

#### ΡΙΟΛ ΡΟ

## **Environmental testing of each analyzer**

- 1. Thermal soak at -10 & 50 °C (2 hrs)
  - Measure cylinder for 15 minutes after removal to check performance
- Thermal ramp up and down between 20 & 40 °C
  - Ramp 5º C / 10 min
  - Soak every 5 ºC for 20 min
  - Measure cylinder during thermal ramp & track drift



Picarro Environmental Test Chamber

## **Tests for field conditions**

- We stress-tests all instruments
  - Drop Test
  - Vibration test
  - Thermal test
- Flight analyzers undergo a pressure test to ensure proper function at altitude



#### **Picarro Vibration Test**



Picarro Pressure Test Chamber

## High precision data in real time

#### Example for G2301

| Guaranteed Performance Specifications, in air                                                                                             | CO <sub>2</sub>                                      | CH <sub>4</sub>      | H <sub>2</sub> O                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|----------------------|----------------------------------------------|--|
| <b>Precision (1-</b> σ <b>of: Raw 5 sec / 5 min avg data)</b><br>Guaranteed over operating conditions specified<br>below                  | < 70 ppb / 25 ppb                                    | < 0.5 ppb / 0.22 ppb | < 80 ppm / 30 ppm                            |  |
| Max Drift at STP (over 24 hrs / 1 month)<br>*(peak-to-peak, 50-minute average)<br>Guaranteed over operating conditions specified<br>below | < 120 ppb / 500 ppb                                  | < 1 ppb / 3 ppb      | < 100 ppm ± 0.5%<br>of reading               |  |
| *Automated Determination of Dry Mol Fraction                                                                                              | Included                                             | Included             | n/a                                          |  |
| Operating Range                                                                                                                           | 0 - 1000 ppm                                         | 0 - 20 ppm           | 0 - 7 %v<br>(39 °C dew pt)<br>non-condensing |  |
| Guaranteed Specifications Range                                                                                                           | 300 - 700 ppm                                        | 1 - 3 ppm            | 0 - 3 %v<br>(25 °C dew pt)<br>non-condensing |  |
| Measurement Interval (Data Rate)                                                                                                          | < 5 seconds                                          | < 5 seconds          | < 5 seconds                                  |  |
| Gas Response: Rise/Fall time (10-90 % / 90-10 %)                                                                                          | < 3 seconds                                          | < 3 seconds          | < 3 seconds                                  |  |
| Measurement Cell Control                                                                                                                  | Temperature: +/- 0.005 °C & Pressure: +/- 0.0002 atm |                      |                                              |  |

\* Picarro calculates drift by subtracting the min from the max of 50 min averages taken over 30 hrs of testing

\*Comparison between NOAA, LSCE, MPI, EMPA and FMI in Rella et al. 2012

## Picarro Green House Gas (GHG) analyzers

Advantages and Benefits

- High-precision, low drift measurements
- Multiple gas species in a single analyzer
- High reliability
- Easiest to use, up and running in minutes
- Requires no sample preparation
- Continuous measurements & sample flow
- Field & laboratory deployable



PICARRO

## Picarro GHG analyzers are present on all 7 continents

Two Picarro analyzers spent a summer at NEEM - North Greenland Ice Shield



#### ΡΙΟΛ ΠΟ



#### LSCE – CO & CO2 analysis – Eiffel Tower, Paris, France



## Weight Climate Change Network Angus

Mace Head



PICARRO

## **Picarro GHG analyzer family**

#### Carbon Dioxide + Carbon Monoxide Analyzers

- G2302  $\rightarrow$  CO<sub>2</sub> CO H<sub>2</sub>O precision analyzer
- G2401  $\rightarrow$  CO<sub>2</sub> CO CH<sub>4</sub> H<sub>2</sub>O precision analyzer
- G2401- $m \rightarrow CO_2$  CO CH<sub>4</sub> H<sub>2</sub>O for flight

### Carbon Dioxide + Methane Analyzers

- G2301  $\rightarrow$  CO<sub>2</sub> CH<sub>4</sub> H<sub>2</sub>O precision analyzer
- G2301- $m \rightarrow CO_2 CH_4 H_2O$  for flight @ 1 Hz
- G2301- $f \rightarrow CO_2 CH_4 H_2O$  for EC flux @ 10 Hz

## **Picarro GHG analyzers for flight measurements**



#### PICARRO

#### Three NASA deployments used to verify satellite measurements







Railroad Valley Playa, NV desert

## Wade McGillis, Columbia University Eddy Covariance measurements on a roof top in NYC



PICARRO

## Two other important GHG have come into focus:

## Methane and N<sub>2</sub>O have a high global warming potential (GWP) on a short term

#### GWP = Global Warming Potential

| Gas              | GWP<br>20 years | GWP<br>100 years | GWP<br>500 years | Radiative<br>Forcing<br>(W m <sup>-2</sup> ) |  |
|------------------|-----------------|------------------|------------------|----------------------------------------------|--|
| CO <sub>2</sub>  | 1               | 1                | 1                | 1.66                                         |  |
| CH <sub>4</sub>  | 72              | 25               | 7.6              | 0.48                                         |  |
| N <sub>2</sub> O | 114             | 289              | 153              | 0.16                                         |  |

Source: IPCC AR4, 2007

## Picarro (GHG) analyzer, including 5 species: The new G2508



#### ΡΙCΛRRΟ

## Measure critical greenhouse gases with one analyzer



## **Experimental Set Up**

- Analyzer: Picarro G2508
- Gas flow rate: 100 sccm
- Data measurement rate: 7 seconds



- Configuration: The analyzer was attached to a glass sample chamber with two modified VCR stainless steel attachments in a closed-system configuration as shown below
- Total system volume = 495 mL



#### Laboratory Soil Flux: CH<sub>4</sub>, NH<sub>3</sub>, H<sub>2</sub>O, N<sub>2</sub>O, CO<sub>2</sub>

Shaded areas indicate periods where chamber was closed



PICARRO

## Measuring GHG from a Salt Marsh in Palo Alto, CA Serena Moseman from Univ. of Rhode Island



## Picarro stable isotopes analyzers

- Nitrogen isotope <sup>15</sup>N, and its isotopomers
- Carbon isotope <sup>13</sup>C on carbon dioxide and methane
- Water isotopologues H<sub>2</sub><sup>18</sup>O and HD<sup>16</sup>O



## Nitrogen isotopomers $\delta^{15}N^{\alpha}$ and $\delta^{15}N^{\beta}$ and $N_2O$ measurements at ambient concentrations

## Analyzer: Picarro G5101-i (Mid-IR Laser source)

| Guaranteed Performance Specifications                     |               |             |                               |  |  |
|-----------------------------------------------------------|---------------|-------------|-------------------------------|--|--|
| Target Species                                            | Precision 1-σ |             | Concentration Range           |  |  |
|                                                           | 10 min avg    | 100 sec avg | (ppm N <sub>2</sub> O in Air) |  |  |
| N₂O (Concentration)                                       | < 0.05 ppb    | < 0.1 ppb   | 0.3 - 2                       |  |  |
| $\delta^{15}N,\delta^{15}N^{\alpha},\delta^{15}N^{\beta}$ | < 0.5 ‰       | < 1 ‰       | 0.3 - 2                       |  |  |





## Allan deviation for ambient N<sub>2</sub>O measurements



Both analyzers perform better than the Picarro specifications and the GAW inter-laboratory uncertainty recommendations

🔆 Picarro Guaranteed Specification

#### ★ GAW Specification ΡΙCΛRRO

### **Carbon Isotopes**



Naturally occurring Safe, non-radioactive One is heavier than the other Different behaviors – simple tracers Measure Precise Enough – Spot the difference!

#### Photosynthesis: <sup>12</sup>C is biochemically preferred



Plant <sup>13</sup>C values depend on:

- -Metabolic Pathway (C3 or C4)
- -Species
- -Environment

## Carbon isotopes: $\delta^{13}$ C in CO<sub>2</sub> and CH<sub>4</sub>

- Excellent precision for both d13C measurements simultaneously.
- Most stable results: Excellent temperature, pressure stability.
- Two d13C-CH4 modes: High Precision for the best results for nearambient applications and High Dynamic Range for higher concentrations.
- Know all the concentrations: 12CO2, 13CO2, 12CH4, 13CH4, H2O
- No drying needed. No CO2 removal needed for d13C-CH4 measurement.
- Get a complete isotopic picture of your samples for maximum carbon cycle insight.

CRDS Analyzer for Isotopic Carbon in CO<sub>2</sub> and CH<sub>4</sub> Model G2201-*i* 



## ChemDetect<sup>™</sup> and interferences

Detect interference in complex gas matrix often found in oil & gas operations

ChemDetect<sup>™</sup> is a new layer of analysis to detect any species that influences the optical spectrum. ChemDetect<sup>™</sup> looks at three types of spectral distortion

- Abnormally large fit residuals
- Changes in the baseline level
- Changes in the baseline slope

The purpose of ChemDetect<sup>™</sup> is to alert a user to the possibility that the measurements are being affected by unexpected gas matrixes.

Picarro G2201-i : One Analyzer with many applications and solutions





## Picarro Combustion Module + CRDS : Measures Bulk $\delta^{13}$ C in CO<sub>2</sub> in everything that burns

PICARRO

-

- Anna



- Unique combination of high precision and ease-of-use
- High throughput 148 samples in 24 hours
- Fix costs are 2x to 3x less than EA-IRMS,
- Continuous costs 5x to 10x less



## **Picarro Combustion Module + CRDS application: Honey Fraud detection**

Honey is one of a number of natural products that are regularly tested for adulteration with lower cost sweeteners such as High Fructose Corn Syrup (HFCS) and cane sugar. Such frequent adulteration poses a problem for scrupulous honey producers and importers who end up operating at a cost disadvantage. The problem is significant enough that U.S. Customs and Border Protection agents regularly test for adulteration in honey shipments.



- Carbon isotopic fractionation is related to CO<sub>2</sub> uptake and enzymatic processes (C3 or C4 plants)
- Bees feed on C3 plants with a  $\delta^{13}$ C of approx. 27 permil and produce a protein, that is found in the honey
- Corn is a C4 plant with a  $\delta^{13}\text{C}$  of approx. 11 permil

```
adding corn syrup to honey will lead to an increase in \delta^{13}\text{C}
```

#### Process

- 6 honey samples and the protein extracted from each sample were sourced from a honey importer for analysis
- The CO<sub>2</sub> resulting from combustion of samples was collected via Picarro's Liaison high throughput interface
- $\delta^{13}C$  was measured on the Picarro CM-CRDS

| Sample   | Protein (‰) | Honey (‰) | C4 Sugars (%) |
|----------|-------------|-----------|---------------|
|          |             |           |               |
| Sample 1 | -26.57      | -27.35    | -4.6          |
| Sample 2 | -26.79      | -27.57    | -4.6          |
| Sample 3 | -26.27      | -25.45    | 5.0           |
| Sample 4 | -26.21      | -27.84    | -9.8          |
| Sample 5 | -26.55      | -26.19    | 2.1           |
| Sample 6 | -27.80      | -27.45    | 1.9           |

#### Comments

- These results show that an AOAC method can be run on a Picarro CM-CRDS
- Negative values should be reported as 0%
- Values above 7% are indicative of significant amounts of C4 sugars
- All six honey samples were unaltered following these criteria

## Another example: Sparking waters, is the CO<sub>2</sub> really natural?

- Problem: Sparkling waters advertised as "Natural" are not
- Question: Is this sparkling water natural?
- Several waters, labeled as "Natural" and "Artificial" were measured for their carbon isotopes to test a single isotope detection method.



#### ΡΙCΛRRO

## Not in all the cases...

 Single isotope measurement compared to known natural ranges proves label fraud in a sparkling water



## **B2221: Simultaneous \delta D and \delta^{13}C:**

World's First and Only Integrated Solution for Simultaneous Bulk <sup>13</sup>C + D Isotope Analysis

- Combust one sample. Measure both <sup>13</sup>C + D ratios.
- Comparable precision to IRMS at one-third the upfront investment.
- Much faster than IRMS. 20 minutes for both <sup>13</sup>C + D analyses.
- One analyzer replaces two IRMS systems.
- Easy sample prep. Runs 99 replicates unattended in 33 hours.

Precision from replicate to replicate:

•  $1\sigma < 0.3$  permil for  $\delta^{13}$ C, and < 3 permil for  $\delta$ D



# Application: Isotopic $\delta D$ and $\delta^{13}C$ can be used to determine the origin of Olive Oil



## Simultaneous $\delta D$ and $\delta^{13}C$ Results



- 8 Olive Oils
- 7 Locations
- n = 4
- 15 minutes each rep.

#### $PIC \Lambda RRO$



PICARRO L2130-*i*  $\delta D/\delta^{18}$ O Ultra High-Precision Isotopic Water Analyzer

The quantum leap to per meg level precision

- One analyzer for solids, liquids, and vapor: lab precision and field robustness
- Typical precision of 11 per meg for δ<sup>18</sup>O and 38 per meg for δD simultaneously for liquid samples
- Allan variance of 10's per meg for averaged  $\delta^{18}O$  and  $\delta D$  vapor measurements
- Calibrate once per day while measuring with sub per mil certainty

A0211: High Precision Vaporizer

A0212: High Throughput Vaporizer A0325: Autosampler for liquid injection

A0101: Standards Delivery Module A0214: Micro-Combustion Module<sup>™</sup>

A0213: Induction Module

#### PICARRO



#### **Isotopic fractionation:**

Heavy water isotopologues are preferably condensing from vapour to liquid water (rain) or ice crystals (snow)

Thus, leaving the remaining water vapour depleted in heavy isotopologues with respect to Ocean water



## **Picarro Peripherals for L2130-i:**

#### **Micro-Combustion-Module**



High precision vaporizer



ΡΙΟΛ ΠΟ

## ChemCorrect<sup>™</sup>: identifies contaminated samples

- ChemCorrect<sup>™</sup>:
  - Identifies and flags contaminated samples with absorption features in the same region as the water spectra, e.g., methanol and ethanol

| t <u>H</u> elp                                                                                                                                                                                  | Source Jostructions |                                                 |                                     |         |     |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|-------------------------------------|---------|-----|-----------|
| mary × Detail Source Instructions ChemCorrect™ - Tue, Aug 31, 2010, 14:18:17 urce: C:Documents and Settings/absiae/My Documents:\ChemCorrect/UC B Dawson\HBDS01 HT IsoWater 20100729 081827.csy |                     |                                                 |                                     |         |     |           |
| Sample                                                                                                                                                                                          | uments and Settings | ghsiao\My Documents\ChemCorrect\ChemCorrectV15' | chemcorrect_inst avg_orgeval_03.csv | Сн₀он   | CH4 | Other     |
| 52                                                                                                                                                                                              | BSMOW               | 5.05                                            | 8.90                                |         |     |           |
| 52                                                                                                                                                                                              | BSMOW               | 4.97                                            | 11.57                               |         |     |           |
| 53                                                                                                                                                                                              | SPW3                | -31.48                                          | -248.12                             |         |     |           |
| 54                                                                                                                                                                                              | BWW                 | -4.90                                           | -41.35                              |         |     |           |
| 1                                                                                                                                                                                               | GG361               | 8.03                                            | -24.10                              |         |     |           |
| 2                                                                                                                                                                                               | GG362               | 7.93                                            | -23.41                              |         |     |           |
| 3                                                                                                                                                                                               | GG363               | 7.84                                            | -22.38                              |         |     |           |
| 4                                                                                                                                                                                               | GG364               | 8.04                                            | -22.19                              |         |     |           |
| 5                                                                                                                                                                                               | GG365               | 7.95                                            | -22.58                              |         |     |           |
| 6                                                                                                                                                                                               | GG366               | -1.37                                           | -34.22                              |         |     | 5.92617   |
| 7                                                                                                                                                                                               | GG367               | -1.45                                           | -35.39                              |         |     |           |
| 8                                                                                                                                                                                               | GG368               | -1.49                                           | -34.95                              |         |     |           |
| 9                                                                                                                                                                                               | GG369               | -1.47                                           | -34.88                              |         |     |           |
| 10                                                                                                                                                                                              | GG370               | -1.53                                           | -34.95                              |         |     |           |
| 11                                                                                                                                                                                              | GG371               | -8.86                                           | -55.25                              | 0.00412 |     |           |
| 54                                                                                                                                                                                              | BWW                 | -4.52                                           | -32.67                              |         |     |           |
| 12                                                                                                                                                                                              | GG372               | -9.18                                           | -55.67                              | 0.00426 |     |           |
| 13                                                                                                                                                                                              | GG373               | -9.43                                           | -56.99                              | 0.00430 |     |           |
| 14                                                                                                                                                                                              | GG374               | -7.57                                           | -50.31                              | 0.00288 |     |           |
| 15                                                                                                                                                                                              | GG375               | -8.42                                           | -53.62                              | 0.00366 |     |           |
| 16                                                                                                                                                                                              | GG376               | -3.39                                           | -36.59                              | 0.00464 |     | 199.77347 |
| 17                                                                                                                                                                                              | GG377               | -3.07                                           | -34.44                              | 0.00446 |     | 194.38676 |
| 18                                                                                                                                                                                              | GG378               | -3.30                                           | -34.71                              | 0.00460 |     | 190.91787 |
| 19                                                                                                                                                                                              | GG3/9               | -3.34                                           | -34.34                              | 0.00456 |     | 193.01275 |
| 20                                                                                                                                                                                              | 66380               | -3.22                                           | -34.46                              | 0.00456 |     | 193.27813 |
| 21                                                                                                                                                                                              | GG381               | 2.91                                            | -12.27                              |         |     |           |
| 22 00002                                                                                                                                                                                        |                     |                                                 |                                     |         |     |           |

Collecting rain isn't hard but how do you measure it in real time?

#### **Research Article**

Received: 24 August 2011

Revised: 3 October 2011

Accepted: 3 October 2011

Published online in Wiley Online Library

mmunications in iss Spectrometry

Rapid Commun. Mass Spectrom. 2011, 25, 3706–3712 (wileyonlinelibrary.com) DOI: 10.1002/rcm.5282

Continuous analysis of  $\delta^{18}$ O and  $\delta$ D values of water by diffusion sampling cavity ring-down spectrometry: a novel sampling device for unattended field monitoring of precipitation, ground and surface waters

#### Niels C. Munksgaard\*, Chris M. Wurster and Michael I. Bird

James Cook University, Earth and Environmental Sciences, MacGregor Road Building A2, Smithfield, Cairns, Queensland 4878, Australia



## **High-Precision and High-Throughput Vaporizers**

|                                                            | High-Precision Vaporizer<br>(A0211)  | High-Throughput Vaporizer<br>(A0212) |
|------------------------------------------------------------|--------------------------------------|--------------------------------------|
| $\delta^{18}$ O precision (1 $\sigma$ ) by injection/sampe | 0.1 ‰ / 0.05 ‰*                      | 0.2 ‰ / 0.1 ‰                        |
| $\delta D$ precision (1 $\sigma$ ) by injection/sample     | 0.5 ‰ / 0.3 ‰*                       | 0.6 ‰ / 0.4 ‰                        |
| $\delta 180/\delta D$ Drift (peak to peak, in 24 hrs)      | < 0.6 ‰ / < 1.8 ‰                    | < 0.2 ‰ / 0.8 ‰                      |
| Volume by injection/sample**                               | $\leq$ 2 $\mu$ L / $\leq$ 12 $\mu$ L | ≤ 5 μL / ≤ 30 μL                     |
| Maximum TDS                                                | ≤ 200 g/kg                           | ≤ 40 g/kg                            |
| Analysis time per injection                                | 4 or 9 minutes                       | < 2 minutes                          |
| Analysis time per sample                                   | 24 or 54 minutes                     | < 12 minutes                         |
| Daily throughput (per 24 hrs)                              | 360 or 160 injections                | 750 injections                       |

\*Precision and drift are specified for the high-precision mode.

\*\*By sample calculations are based on running 6 injections, with the first 2 discarded and standard deviation calculated for the last 4.

## Picarro G2201-i

| Performance<br>Specifications                      | CO <sub>2</sub> Isotope-only mode                                                                     | CH4 Isotope-only mode                                                                                                                                                                                                     | Simultaneous mode                                                                                                                                                                                                         |  |  |  |
|----------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $\delta^{13}$ C Precision (1- $\sigma$ , 1 Hr wind | δ <sup>13</sup> C Precision (1-σ, 1 Hr window, 5 min. average)                                        |                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |  |  |  |
| δ <sup>13</sup> C-CO <sub>2</sub>                  | < 0.12 ‰                                                                                              | -                                                                                                                                                                                                                         | < 0.16 ‰                                                                                                                                                                                                                  |  |  |  |
| δ¹³C-CH₄                                           | -                                                                                                     | High Precision mode: < 0.8 ‰<br>High Dynamic Range mode: < 0.4 ‰                                                                                                                                                          | High Precision mode: < 1.15 ‰<br>High Dynamic Range mode: <<br>0.55‰                                                                                                                                                      |  |  |  |
| δ <sup>13</sup> C Maximum Drift (peak-to-          | peak, 1 hr average interval aver                                                                      | age over 24 hrs at STP)                                                                                                                                                                                                   |                                                                                                                                                                                                                           |  |  |  |
| δ <sup>13</sup> C-CO <sub>2</sub>                  | < 0.6 ‰                                                                                               | -                                                                                                                                                                                                                         | < 0.6 ‰                                                                                                                                                                                                                   |  |  |  |
| δ¹³C-CH₄                                           | -                                                                                                     | High Precision and High Dynamic<br>Range modes:<br>< 1.5 ‰ at 10 ppm CH₄                                                                                                                                                  | High Precision and High Dynamic<br>Range<br>modes:<br>< 1.5 ‰ at 10 ppm CH₄                                                                                                                                               |  |  |  |
| Concentration Precision (1-o                       | , 30 sec. average)                                                                                    |                                                                                                                                                                                                                           |                                                                                                                                                                                                                           |  |  |  |
| CO2                                                | 200 ppb + 0.05 % of reading<br>( <sup>12</sup> C)<br>10 ppb + 0.05 % of reading<br>( <sup>13</sup> C) | 1 ppm + 0.25 % of reading ( <sup>12</sup> C)                                                                                                                                                                              | 0-2.2 %                                                                                                                                                                                                                   |  |  |  |
| CH₄                                                | 50 ppb + 0.05 % of reading ( <sup>12</sup> C)                                                         | High Precision mode<br>5 ppb + 0.05 % of reading ( $^{12}$ C)<br>1 ppb + 0.05 % of reading ( $^{13}$ C)<br>High Dynamic Range mode:<br>50 ppb + 0.05 % of reading ( $^{12}$ C)<br>10 ppb + 0.05 % of reading ( $^{13}$ C) | High Precision mode<br>5 ppb + 0.05 % of reading ( $^{12}$ C)<br>1 ppb + 0.05 % of reading ( $^{13}$ C)<br>High Dynamic Range mode:<br>50 ppb + 0.05 % of reading ( $^{12}$ C)<br>10 ppb + 0.05 % of reading ( $^{13}$ C) |  |  |  |
| H <sub>2</sub> O                                   |                                                                                                       | 100 ppm                                                                                                                                                                                                                   |                                                                                                                                                                                                                           |  |  |  |