

CABOT INSTITUTE Living with global uncertainty

2011 Tsunami in Tohoku, Japan: Planning and Design of Vertical Evacuation Buildings

Katsu Goda Cabot Research Institute University of Bristol

Living with global uncertainty

Content

- *M*_w9.0 11th March 2011 Tohoku earthquake and tsunami damage
- Performance of tsunami protection
- Vertical evacuation buildings a case study for Yamamoto
- Key lessons to be learned

EEFIT-Tohoku Mission

CABOT INSTITUTE Living with global uncertainty

Earthquake Facts

CABOT INSTITUTE Living with global uncertainty

 Fukushima Daiichi nuclear power plant crisis

- Very large earthquake: M_w9.0
- Catastrophic tsunami damage
- 19000+ death/missing
- Direct loss: 300-400 billion
 U.S. dollars
- Infrastructure damage levee, road, bridge, railway, water treatment plant, industrial facilities, ...

CABOT INSTITUTE

Living with global uncertainty

General Damage Statistics

 Widespread damage to buildings – concentrated in Iwate/Miyagi/Fukushima. This includes both tsunami-affected and shaking-affected cases.

Damage statistics from National Police Agency

Prefecture	Total collapse	Half collapse	Partial damage	Non- residential damage	Road
Iwate	20998	3174	2668	1538	30
Miyagi	65462	48684	76785	17826	390
Fukushima	15885	29125	92455	1015	19
Ibaraki	2179	14873	132921	8551	307
Tochigi	257	2074	56799	295	257
Gunma	0	6	16145	195	7
Saitama	0	5	1800	33	160
Chiba	771	8056	27714	708	2343
Tokyo	0	11	257	20	13
Kanagawa	0	7	279	1	0
Others	343	959	110	1673	33
Total	105895	106974	407933	31855	3559

- M_w 9.0 mega-thrust earthquake occurred at 2:46:23 pm.
- It triggered tsunamis more than 10 m high, causing immense tsunami damage
- Significant deformation on land up to 1 m subsidence

Colour contour: slip ^{39'} Vector: ground deformation (Simons et al. 2011) ^{37'}

Was This Tsunami Forecasted?

CABOT INSTITUTE Living with global uncertainty

- The Sanriku coast suffered tsunamis in 1896, 1933, and 1960 earthquakes repeated
- The 2011 event generated much larger tsunami waves. Nobody had expected such high tsunami.
- However, historical records indicate such massive tsunamis did occur in the past – e.g. 1611 Keicho tsunami and 869 Jogan tsunami.

Rikuzen Takata

CABOT INSTITUTE

Living with global uncertainty

CABOT INSTITUTE Living with global uncertainty

Taro

CABOT INSTITUTE Living with global uncertainty

N"0'44°05

 10-m high walls over 2 km – a well-protected town against tsunami – did not protect the

141°57'0"E

141°58'0"E

141°59'0"E

141°58′0″E

141°59'0"E

Casualty Mitigation

best strategy to reduce the catastrophic tsunami. ami protection – Fudai. structures with higher

- Option 3: Reloca Noda.
- Option 4: Combi structures

Design of Vertical Evacuation Buildings BRISTOL

CABOT INSTITUTE Living with global uncertainty

University of

- 19000+ death disproportionate risks for elderly (75% of deaths for age 50+).
- Both horizontal and vertical evacuation must be improved.
- Different strategies for different communities (topography, sea defence, tsunami hazard, demography, etc.)

Design of Vertical Evacuation Buildings BRISTOL

CABOT INSTITUTE Living with global uncertainty

University of

- Input information tsunami height and velocity at a location
- Various forces act on buildings subjected to tsunami: hydrostatic force, hydrodynamic force, debris, buoyant force, etc.

Case Study for Yamamoto (1)

CABOT INSTITUTE Living with global uncertainty

Coastal plains; Aging society; 676 deaths; only one vertical evacuation building

University of BRISTOL

Case Study for Yamamoto (2)

CABOT INSTITUTE Living with global uncertainty

- Post-tsunami survet was conducted in Natori by Murakami et al. (2012)
- Tsunami warning was heard through: radio, TV, municipalities/police
- Use of cars

Timing of evacuation

Travel means for evacuation

Case Study for Yamamoto (3)

CABOT INSTITUTE

140.84E 140.86E 140.88E 140.90E 140.92E 140.94E
 Five sites for vertical evacuation buildings; Anticipated inundation height plus some freeboard; Coverage area - 500 m radius; Occupancy: local needs for services

Assume 600 lives saved; 80K GBP/life versus 20-30K GBP/quality year; Cost-effective!

3	Evacuation building site & occupancy type	Inundation depth (m)	Design tsunami height (m)	Building height (m) [# of storeys]	Covered population [Floor area (m ²)]	Cost (million GBP)
	Site 1: Care home	1.95	5.54	14 & [4]	1320 & [2400]	18.1
3	Site 2: Elem. school	1.85	5.41	14 & [4]	1030 & [1500]	10.82
	Site 3: Sports centre	4.09	8.32	14 & [3]	780 & [1000]	6.15
3	Site 4: Post office	10.49	16.64	17.5 & [5]	740 & [800]	6.89
	Site 5: Fish process. plant	7.76	13.09	17.5 & [5]	970 & [1000]	5.53

CABOT INSTITUTE

Case Study for Yamamoto (4)

- 500 m radius primary catchment and extended catchment
- Open ground space, breakaway walls
- Structural design: lateral forces and pile foundation

CABOT INSTITUTE Living with global uncertainty

Key Lessons

- Imagine extreme situations scenarios!
- Combination of soft and hard measures

 resistant structures plus emergency
 planning/evacuation.
- Multi-layer protection system robustness & resilience.
- Cooperation among victims, Self-Defence Forces, municipalities, NGOs/NPOs, companies, governments, foreign aids, etc.

CABOT INSTITUTE

Acknowledgements

- EPSRC funded three team members (including KG).
- Many individuals who helped us before, during and after our time in Japan, including: Dr. Eri Gavanski, Dr. Manjae Lee, Dr. Hitomi Murakami, Dr. Maki Koyama, and Prof. Akira Mano (and many others).

EEFIT corporate sponsors:

