👹 Sophia University

Analytical Study on Low Compressive Strength of Composite Laminates with Impact Damage

Hiroshi Suemasu, Sophia University Makoto Ichiki, Graduate Student, Sophia University and Yuichiro Aoki, JAXA

Background

Composite Materials

High Specific Strength and Specific Stiffness BUT Insufficient toughness Complex damage state and growth to failure

Evaluation of Material Strength Considering its Damage Tolerant Performance

Compression After Impact (CAI) Strength

= A measure of damage tolerant performance

👹 Sophia University

CAI strength — Damage size and interlaminar toughness

Deflection T700/#2500 (Impact energy= 5.025 J/mm) *niversity*

Courtesy of Dr. Y. Aoki (JAXA)_{5/27}

👹 Sophia University

Load – Out of plane displacement: SP30S

Applied load and maximum energy

To know the energy release rate is one way to understand the characteristic of CAI strength.

UK-Japan Workshop, Bristol, March 24-27, 2013

Unit damage and idealized annular plate. *niversity*

Comparison of Energy Release Rate Distributions

ţy

What is CAI failure?

- Final failure occurs at the stage of throughthickness local buckling.
- Small adjustment of damage configurations by partial delamination growth occurs before unstable growth of whole damage into transverse direction.

The energy release rate of multiple circular
damage model can be a measure of the final
failure

It enables the prediction of the failure load to know the energy release rate as a function of applied load and damage size.

$$G(P|d)=G_{cr}$$

W Sophia University

Analytical Study

to get closed form solution

Assembled plate model

Inplane stiffness of damaged portion ^{Sophia University}

Boundary conditions of damaged portion

$$u = \mp \varepsilon_{\infty} d'/2$$
 at $x = \pm d'/2$
 $v = \pm v \varepsilon_{\infty} d'/2$ at $y = \pm d'/2$

Postbuckling Load and End-Shortening

$$\begin{aligned} \varepsilon_{d} &= \sigma_{d} / E & \text{when} \quad \sigma_{d} < \sigma_{cr} \\ \frac{\varepsilon_{d} - \varepsilon_{cr}}{\varepsilon_{cr}} &= \xi + f(\xi) \\ \frac{\sigma_{d} - \sigma_{cr}}{\sigma_{cr}} &= \xi \end{aligned} \end{aligned} \text{ when } \quad \sigma_{d} > \sigma_{cr} \quad \sigma_{cr} = E\varepsilon_{cr} \end{aligned}$$

Relationship between normalized load and end-shortening is independent of unit size d' when d/d' is constant

UK-Japan Workshop, Bristol, March 24-27, 2013

Multiple delamination model

UK-Japan Workshop, Bristol, March 24-27, 2013

Model 1: $\sigma = \sigma_{\infty}$ in all portionsUpper boundModel 2: $\varepsilon = \varepsilon_{\infty}$ in all portionsLower boundModel 3: series model $\sigma_{\infty}b = \sigma_d d' + \sigma_2(b-d'), \quad \sigma_1 = \sigma_{\infty}$ $\varepsilon_{\infty}a = \varepsilon_d d' + \varepsilon_1(a-d'), \quad \varepsilon_2 = \varepsilon_d$

Model 4: parallel model

$$\begin{aligned} \varepsilon_{\infty} a &= \varepsilon_{d} d' + \varepsilon_{2} (a - d'), & \varepsilon_{1} &= \varepsilon_{\infty} \\ \sigma_{\infty} b &= \sigma_{d} d' + \sigma_{2} (b - d'), & \sigma_{2} &= \sigma_{d} \end{aligned}$$

Relationship between Load and End-Shortening of assembled plate

$$\frac{\sigma_{\infty}}{\sigma_{cr}} = 1 + \xi + (p - s\beta^2)f(\xi)$$
$$\frac{\varepsilon_{\infty}}{\varepsilon_{cr}} = 1 + \xi + pf(\xi)$$

$$p=s\beta^2$$
forModel 1 $p=1$ forModel 2 $p=1-\beta+s\beta^2$ forModel 3 $p=s\beta$ forModel 4

Sophia University

Total Strain Energy

$$\begin{split} U &= \int_{0}^{u_{0}} P du = \int_{0}^{\varepsilon_{0}} bt \sigma_{\infty} (ad\varepsilon_{\infty}) \\ &= Eabt\varepsilon_{cr}^{2} \bigg[\frac{1}{2} + \int_{0}^{\xi} (1 + \xi + pf - s\beta^{2}f)(1 + pf')d\xi \bigg] \\ &= Eabt\varepsilon_{cr}^{2} \bigg\{ \frac{1}{2} + \frac{1}{2} \big[(1 + \xi + pf)^{2} \big]_{0}^{\xi} - s\beta^{2} \int_{0}^{\xi} f(1 + pf')d\xi \bigg\} \\ &= Eabt\varepsilon_{cr}^{2} \bigg\{ \frac{1}{2} (1 + \xi + pf)^{2} - s\beta^{2} \bigg(F + \frac{1}{2} pf^{2} \bigg) \bigg\} \\ &= \frac{1}{2} Eabt\varepsilon_{\infty}^{2} - \frac{1}{2} Em^{2}k^{2}t^{5}d^{-2} \big(pf^{2} + 2F \big) \\ &F = \int_{0}^{\xi} fd\xi \qquad \alpha = d/b, \ \beta = d/a \end{split}$$

$$G = -\frac{n}{n-1} \left[\frac{U[\varepsilon_{\infty} | d + \Delta d] - U[\varepsilon_{\infty} | d]}{\pi d\Delta d/2} \right]_{\varepsilon_{0} = const}$$

$$= -\frac{2}{\pi d} \frac{n}{n-1} \left[\frac{\partial}{\partial d} U[\varepsilon_{\infty} | d] \right]_{\varepsilon_{0} = const}$$

$$= \frac{n}{n-1} \frac{Ek^{2}m^{2}t^{5}}{2\pi d} \frac{\partial}{\partial d} \left[d^{-2} \left(pf^{2} + 2F \right) \right]_{\varepsilon_{0} = const}$$

$$= \frac{n}{n-1} \frac{Em^{2}t}{\pi} \varepsilon_{cr}^{2} \left[4(1+\xi)f - 4F + \left(2p - \beta \frac{\partial p}{\partial \beta} \right) f^{2} \right]$$

W Sophia University

W Sophia University

Average Energy Release Rate

👹 Sophia University

Applied Load & Average EER

👹 Sophia University

CONCLUSIONS

- An explicit form of energy release rate based on simplified model is proposed.
- The solution give a quite good estimate of energy release rate.
- The solution explains the effect of various parameters on the CAI strength.

$$G = \frac{n}{n-1} \frac{Em^{2}t}{\pi} \varepsilon_{cr}^{2} \left[4(1+\xi)f - 4F + \left(2p - \beta \frac{\partial p}{\partial \beta}\right)f^{2} \right]$$
$$\frac{\sigma_{\infty}}{\sigma_{cr}} = 1 + \xi + \left(p - s\beta^{2}\right)f(\xi)$$
$$\frac{\varepsilon_{\infty}}{\varepsilon_{cr}} = 1 + \xi + pf(\xi)$$