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Background

Compression After Impact (CAI) Strength
= A measure of damage tolerant performance

Evaluation of Material Strength Considering its 
Damage Tolerant Performance

High Specific Strength and Specific Stiffness
BUT

Insufficient toughness 
Complex damage state and growth to failure

Composite Materials

UK-Japan Workshop, Bristol, March 24-27, 2013
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2 mm
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Experiment 
&

Finite Element Analysis
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CAI strength ― Damage size and interlaminar toughness
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16ply 32ply 64ply

Deflection T700/#2500 （Impact energy= 5.025 J/mm）

Courtesy of Dr. Y. Aoki （JAXA)
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32ply

64ply

16ply

Circular multiple delamination model 
and

Double spiral damage model

Local buckling load of 30 mm damage
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Load – Out of plane displacement: SP30S

Intact laminate

Local surface 
buckling

Local through 
thickness buckling

Global buckling

UK-Japan Workshop, Bristol, March 24-27, 2013
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Applied load and maximum energy 
release rate at the outside edges

UK-Japan Workshop, Bristol, March 24-27, 2013

To know the energy release rate is one way to understand the characteristic of CAI strength.
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Unit damage and idealized annular plate.

UK-Japan Workshop, Bristol, March 24-27, 2013
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P=140 kN ( = 292 MPa)

P=170 kN ( = 354 MPa)

Comparison of Energy Release Rate Distributions

Annular delamination model

Double spiral damage model

UK-Japan Workshop, Bristol, March 24-27, 2013

Ｐresent theory
(d=33mm)
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What is CAI failure?

• Final failure occurs at the stage of through-
thickness local buckling.

• Small adjustment of damage configurations by
partial delamination growth occurs before
unstable growth of whole damage into
transverse direction.

It enables the prediction of the failure load to
know the energy release rate as a function of
applied load and damage size.

G(P|d)=Gcr

The energy release rate of multiple circular
damage model can be a measure of the final
failure
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Analytical Study

to get closed form solution
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Assembled plate model

UK-Japan Workshop, Bristol, March 24-27, 2013
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Inplane stiffness is maintained

Inplane stiffness decrease due to 
buckling of damaged portion
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Inplane stiffness of damaged portion

UK-Japan Workshop, Bristol, March 24-27, 2013

Out of plane deflection is constrained
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Postbuckling Load and End-Shortening

UK-Japan Workshop, Bristol, March 24-27, 2013

cr3

cr
 3

crcr

cr

E
d
tk















2

1

1

Relationship between normalized load and end-shortening is
independent of unit size d' when d/d' is constant

 
crd

cr

crd

cr

crd

crddd

f

E
































when

when



Sophia University

17/27UK-Japan Workshop, Bristol, March 24-27, 2013

x, u

y, v

d

d'

Multiple circular damage
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Multiple delamination model

m = d'/d = 1.1
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Model 1:  =  in all portions Upper bound
Model 2:  =  in all portions Lower bound
Model 3: series model

b = d d' + 2(bd'), 1 = 
a = d d' + 1(ad'), 2 =d

Model 4: parallel model
a = dd' + 2(ad'), 1 = 
b = dd' + 2(bd'), 2=d
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Relationship between Load and End-
Shortening of  assembled plate
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Total Strain Energy

= d /b, = d/a
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Average energy release rate G
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Compliance Increase
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Average Energy Release Rate
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Applied Load & Average EER
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CONCLUSIONS

• An explicit form of  energy release rate based on simplified 
model is proposed.

• The solution give a quite good estimate of energy release rate.
• The solution explains the effect of various parameters on the 

CAI strength.

UK-Japan Workshop, Bristol, March 24-27, 2013
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