

Monitoring Cure in High Performance Composites

Ivana Partridge

www.bris.ac.uk/composites

ADVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENCE

Thermosetting resins and their composites

- The curing reaction of the resin is a critical process in composites manufacturing.
- Physico-chemical effects can be followed by process monitoring techniques, such as dielectric sensing

resin

carbon

fibres

Thermosetting resins and cure reaction

Thermosetting resins and cure reaction

TTT diagram of resin system

Cure process – critical phenomena/process milestones

Point of maximum flow

Viscosity of the resin is minimum \rightarrow minimum flow resistance.

Manufacturing: Onset of reaction, practical end of mould filling in Liquid Composite Moulding, onset of pressure application in autoclave

- Gelation

Transition from the liquid state \rightarrow rubber state

Matrix does not flow after gelation, no-return point in cure !

Manufacturing: Fibre wetting , phase separation processes stopped by gelation

Vitrification

Transition from the rubber state \rightarrow glass state - Polymerisation reaction essentially stops.

Manufacturing: Final glass transition temperature reached - defines upper temperature limit for material usage

Dielectric measurements

Charged species contributing to signal

The charged species respond differently at various frequencies in the spectrum

7/19

Dielectric measurements

Signal analysis and property derivations

Moving from circuit properties to material properties

$$\begin{aligned} v(t)/i(t) &= |Z|, \theta \\ (Z, \theta) \to Z', Z'' \end{aligned}$$

$$\begin{aligned} & (Z, \theta) \to C_p, R_p \end{aligned}$$

$$\begin{aligned} & C - R \text{ parallel circuit analysis} \\ & R_p, f, geometry \to \varepsilon'' \\ & C_p, \varepsilon'', f, geometry \to \varepsilon' \end{aligned}$$

$$\begin{aligned} & C_p, R_p \to \varepsilon', \varepsilon'' \to \varepsilon', \sigma \end{aligned}$$

$$\begin{aligned} & \text{Derivation of conductivity} \end{aligned}$$

Impedance representation

logf

- Minimum, maximum and shoulder in the imaginary impedance spectrum
- Two plateaus in the real impedance spectrum

Dielectric cure monitoring

Degree of cure estimation under dynamic conditions

Commercial epoxy

Sensor development

Dielectric sensor: flat interdigital layout of capacitor, creating fringing (curved) electric field as the terminals are subjected to alternating voltage

Thin polymer film substrate – suitable for embedded sensors

10/19

Ceramic substrate-suitable for tool mounted, reusable sensors (photo courtesy of INASCO)

Always require protection against shorting out on conductive fibres

Application to composites processing

Installation of monitoring system in composite processing tools

(Images supplied by INASCO)

Resin flow monitoring in Resin transfer moulding

Dielectric lineal sensor in non conductive reinforcement

Modelling and monitoring

Cure monitoring system also controls the oven heating/cooling.

Material properties in current database:

- Degree of cure
- Viscosity advancement
- Tg advancement

User defined cure cycle Material property evolution in real time.

INASCO dielectric cure monitoring equipment and controlled oven, Airbus UK/National Composites Centre

Matrices for high performance composites

Thermoplastic particles occluded within epoxy matrix (low concentration of thermoplastic)

15/19

Or 'phase inverted' structure such as in TGDDM epoxy/ PEI thermoplastic

Initial work at Cranfield prompted by interest in phase separation. Using laboratory equipment, a well pre-characterised epoxyrubber blend and Dek-Dyne sensors (\$50 a piece, non-reusable !!)

Liquid epoxy & hardener and Dissolved thermoplastic

Solid toughened epoxy

Dielectric monitoring of phase separation during cure of blends of epoxy resin with carboxyl-terminated poly(butadieneco-acrylonitrile)

George M. Maïstros, Harry Block, Clive B. Bucknall* and Ivana K. Partridge

School of Industrial and Manufacturing Science, Cranfield Institute of Technology. Cranfield, Bedford MK43 OAL, UK (Received 30 April 1991; revised 23 January 1992; accepted 13 March 1992)

Figure 1 Variation in temperature T of the dielectric sample cell during cure of the neat resin at an oven temperature of 80°C, compared with conversion α , gel fraction and viscosity η for the same system, also at a nominal cure temperature of 80°C. The cure time, t_{vit} , to reach T_g was obtained from a d.s.c. curve

Figure 4 Dielectric data on the blend of epoxy resin and hardener with 15 wt% CTBN rubber, cured at 80°C. Plots of: (a) relative permittivity ε' , and (b) dielectric loss ε'' , against frequency and cure time. Sample contains highest concentration of adventitious mobile ions (see *Figure 5*). Note that scales for ε' and ε'' are different from *Figure 3*

POLYMER, 1992, Volume 33, Number 21 4473

Dispersion monitoring in epoxy/CNT

- > New interface results in an additional relaxation mechanism
- Strength of relaxation can provide a metric of dispersion
- Response controlled by the shape factor of dispersed phase and volume fractions

Details see Dr A Skordos at Cranfield

200 ur

DVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENC

18/19

>

Dielectric cure monitoring usable to reduce cure cycles and provide certification on-line; possibility of feedback-loop process control, management of residual stresses

Next generation aircraft – composite structure performance really critical ?? If so.....may come back to **phase separation** monitoring in aerospace grade resin blends.....

Driving dispersion quality in future commercial nanocomposites.....

