

Predicting Failure in Composites

Michael R. Wisnom

Stephen Hallett

www.bris.ac.uk/composites

Overview

- Fracture is complex, with interacting damage modes
- Discrete nature of fracture is crucial
- Cohesive zone interface elements are very effective at representing discrete fractures
- Good predictions can be made provided correct failure mechanism is captured
- Range of examples:
 - Un-notched and notched tension
 - Defects
 - Impact
 - Tapered laminates
 - Fatigue

Importance of discrete failure

- Low transverse strength causes early matrix cracks and delaminations
- Form discrete fractures that join up and interact
- Provides alternative mechanism to unload fibres
- Important in controlling ultimate failure
- Homogeneous models can represent reduction in stiffness due to damage
- Cannot capture discrete nature of final fracture

Other examples of discrete failure

 Fibre dominated failure of quasiisotropic carbon/epoxy in tension
Factor of 3 variation in strength with stacking sequence and ply block thickness

 Ply drops – complete block of material can shear out

Wisnom, 2010

Interface elements

- Interface elements relating tractions to relative displacements are a good way to model discrete failures
- Unify stress-based and fracture mechanics approaches to failure
- Can handle initiation and propagation
- Physically realistic and numerically convenient approach
- Can be applied to both delaminations and discrete transverse cracks
- Interface elements available now in many commercial programs

Interaction of delamination and matrix cracks

- IM7/8552 carbon-epoxy laminate
- (45₄/90₄/45₄/0₄)_s) layup
- Uniaxial tension loading
- Fails by delamination before fibre failure
- Cohesive elements at all ply interfaces
- Potential splits also represented with interface elements

Comparison with experimental observations

Interaction of delamination and cracks captured Predicted failure stress within experimental scatter

Extended FEM

- Some effect of assumed relative split locations
- XFEM allows automatic split insertion

larve et al, 2011

Open hole tension

- •Hexcel IM7/8552
- • $(45_m/90_m/-45_m/0_m)_{ns}$ layup
- All specimens scaled
- Two methods of thickness scaling
- •Complex damage development:

Matrix cracking, splitting, delamination

Hallett et al, 2009

Finite element analysis

Interface elements between all plies

LS_Dyna

Weibull fibre failure criterion

Not to scale

Predicted damage, t=4mm,d=25mm

Stress level (M Pa)	Location of interlaminar interface			Location of splitting within plies
	45°/90°	90°/-45°	-45°/0°	A ll layers (superim posed)
152	5	9	9	4
184	5	9	2	-
423		2	#	*
372				

•Damage mechanisms captured well

•Good correlation of test and analysis failure stresses

Overheight Compact Tension specimens

- Fibre failure catastrophic in open hole specimens
- OCT tests produce gradual failure
- Specimen size supposed to be sufficiently large to allow development of damage "process zone" ahead of notch tip
- Two stacking sequences dispersed and blocked plies
- IM7/8552 carbon/epoxy

DVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENCE

FE mesh and fibre failure

- Multiple potential crack sites inserted ahead of notch tip
- Interface elements between all plies
- Fibre failure modelled by progressive Weibull criterion

No. of Elements
$$\sum_{i=1}^{No. of Elements} V_i \left(\frac{\sigma_i}{\sigma_{unit}}\right)^m \ge 1$$

- Maximum stress element is removed
- Load redistributed by FE
- Weibull criteria re-evaluated at next time increment

ADVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENCE

Layup $[45_4/90_4/-45_4/0_4]_s$ (4mm)

Jniversity of

- Thick ply blocks promote matrix cracking and delamination
- 0° ply cracks ahead of the notch blunt crack
- No fibre failure observed
- Failure by pullout of 0° ply block

Scaled Centre Notch Tension tests

In-plane scaled IM7/8552 [45/90/-45/0]_{4s} laminates

C=3.175mm, 6.35mm, 12.7mm, 25.4mm

Central-crack and open-hole specimens

In-plane scaled test specimens

Failure of specimens

X Xu

Size effects in notched laminates

- Strength reduces with size, but less than predicted by LEFM
- Similar scaling trends for open holes and centre notches
- Specimens with cracks stronger than holes!

Failure mechanism (fixed scale)

Interrupted tests (95% failure load):

C=3.175mm

C=12.7mm

C=3.175mm

nm C=12.7mm Central double 0 degree ply

Single 0 degree ply

C=25.4mm

FE modeling

- Delamination elements between all plies
- Potential split elements along multiple paths at crack tips
- Weibull failure criterion and element removal for continuous fibre failure

FE mesh (Baseline c=3.175mm)

Mesh size 0.06mm

Failure mechanisms (Baseline c=3.175mm)

- Fibre failure growth before final failure in single 0 plies
- No fibre failure in central double 0 plies
- Matches experimental observations

Failure mechanisms (Scaled up c=25.4mm)

Single 0 plies

Double 0 plies

- Fibre failure growth before final failure in ALL plies
- Consistent with experimental observations

Results correlation

- Good overall correlation
- FE is able to predict damage and scaling trends
- Damage zone size increases with specimen size, and so fracture toughness increases

Out-of-plane wrinkling compression test

Specimen 3 - Final 4 frames @ 90,000 FPS

IM7/8552 [+45, 90, -45, 0]₃₅

M Jones

Analysis results – compression

- 3D FE model with cohesive elements at all interfaces
- Captures delamination initiation from the edge
- Failure at 455 MPa cf experimental average of 457 MPa

Delamination at 45/90 interface observed in experiment

Jniversity of

S Mukhopadhyay

Impact and compression after impact

 Impact damage mechanism with multiple delaminations well captured

 CAI response can also be modelled

Diameter =17.04mm

R. Sun

Prediction of delamination in tapers

Fatigue delamination growth

- Novel cohesive formulations can model fatigue as a function of the SERR amplitude and number of cycles
- Paris-law regime, R-ratio (trough/peak loads) of 0.1
- Envelops of forces and displacements modelled

ADVANCED COMPOSITES CENTRE FOR INNOVATION & SCIENCE

Model-test correlation: cyclic loading

Open hole tension fatigue

4x4 (Fine) Mesh at 40%, 50%, 60% and 70% Cyclic Fatigue Load

O. Nixon-Pearson

Conclusions

- Discrete delaminations and splits are crucial in controlling failure
- Good predictions can be made provided mechanisms are correctly captured:
 - Notched and unnotched tension
 - Tapered laminates
 - Impact and compression after impact
 - Defects e.g. out-of-plane wrinkling
- Approach also works for fatigue

Papers

- Hallett SR, Jiang W-G, Khan B, Wisnom MR, 2008. Modelling the interaction between matrix cracks and delamination damage in scaled quasi-isotopic specimens. Composites Science and Technology 68:80-90.
- Hallett SR, Green BG, Jiang WG, Wisnom MR, 2009. An experimental and numerical investigation into the damage mechanisms in notched composites. Composites Part A 40:613-624.
- Iarve EV, Gurvich MR, Mollenhauer DH Rose CA, Dávila CG, 2011. Mesh-independent matrix cracking and delamination modeling in laminated composites, International Journal For Numerical Methods In Engineering 88:749–773.
- Kawashita LF, Jones M, Giannis S, Hallett SR, Wisnom MR, 2011. High fidelity modelling of tapered laminates with internal ply terminations. 18th International Conference on Composite Materials (ICCM18), Jeju, Korea, 21-26 August 2011.
- Li X, Hallett SR, Wisnom MR, 2013. Numerical investigation of progressive damage and the effect of layup in overheight compact tension tests. Composites Part A, online.
- Mukhopadhyay S, Jones MI, Hallett SR, 2013. Modelling of out-of-plane fibre waviness; tension and compression tests, ECCOMAS Thematic Conference on the Mechanical Response of Composites, September 2013.
- Nixon-Pearson OJ, Hallett SR, Withers P and Rouse J, 2013. Damage development in open hole composite specimens in fatigue, submitted.
- Wisnom MR, 2010. Modelling discrete failures in composites with interface elements. Composites Part A 41:795–805.

