Imperial College The Composites Centre London

From water-epoxy slurries to hierarchical composites

Tomi Herceg¹, M. Shukur Zainol Abidin², Emile Greenhalgh², Milo Shaffer³ and Alexander Bismarck¹

- ¹ Polymer & Composite Engineering Group, Department of Chemical Engineering
- ² The Composites Centre, Department of Aeronautics
- ³ Department of Chemistry

www.imperial.ac.uk/pace

© Imperial College London

Outline

- What are we aiming for?
- What are Hierarchical Composites?
- Challenges to be tackled
- The "hairy fibre" route
- The nanocomposite route to thermoset hierarchical composites
- Summary

What Are Composites?

No wetting \rightarrow No interface

SEI

5.0kV 100nm WD 3mm

Courtesy of Milo Shaffer

nterface

adhesion, load transfer & overall performance

Fibre reinforced polymer composites

Objective: hierarchical composites!

Hierarchical composite structures with CNTs:

Incorporation of nano-reinforcement should improve:

through-thickness properties & other critical properties

Challenges to be addressed

Aim reinforce matrix with "nano"-sized "filler"

Challenges:

- 1. disperse CNTs
- 2. tailor adhesion

3. maintain processability of matrix or identify new processing routes

further reinforce nanocomposite matrix with conventional fibres to create

high performance hierarchical composites

with <u>improved mechanical properties</u>, thermal stability and <u>reduced through life costs</u>

Motivation

- Achieve good CNT dispersion for high (10+wt%) loadings
- "Upgrade" cheap epoxy resins
- Identify route to scale-up fabrication
- Demonstrate improvements in fracture toughness and critical engineering properties
- Can it be combined with hairy fibre research?
 - Ultra-high CNT loadings

Objective: hierarchical composites!

Hierarchical composite structures with CNTs:

Using "hairy" fibres to deliver nano-reinforcement should improve:

- dispersion & alignment of nano-reinforcement
- interfacial area & bonding
- through-thickness properties & other critical properties

CNT-grafted carbon fibres

Atomic force microscopy (AFM)

AFM images showed variations in surface roughness and material properties.

Ref.: H. Qian et al. Nanoscale, 3 (2011) 4759.

Raman mapping

Ref.: H. Qian et al. Nanoscale, 3 (2011) 4759.

Nanoindentation

CNT-g-silica fibres

Ref.: H. Qian et al. Nanoscale, 3 (2011) 4759.

Key findings:

- successful CNT growth on different fibres
- significant increase of surface area
- unaffected fibre modulus, but a decrease of fibre tensile strength
- good wettability of hairy fibres
- 30-150% improvement of IFSS
- increase of hardness and modulus

of the surrounding matrix

Journal of Materials Chemistry **RSC** Publishing rbon nanotube-based hierarchic

Ref.: H. Qian, E.S. Greenhalgh, M.S.P. Shaffer, A. Bismarck, J. Mater. Chem. 20 (2010) 4751-62.

Objective: hierarchical composites!

Hierarchical composite structures with CNTs:

Using nanocomposite powder impregnation route should:

- allow to disperse nano-reinforcement throughout composite
- be easy and fast to process
- through-thickness strength & other critical properties

Continuous Processing

Ref.: J. Kärger et al. Sulzer Technical Review, 2 (1999) 4.

Materials

- Carbon Nanotubes (CNTs)
 - Nanocyl NC 7000
- Epoxy Matrix and hardener
 - EPIKOTE 1001 epoxy
 - DICY hardener
- Carbon Fibres
 - AS4C GP (Hexcel)

Nanocomposite production

- Looking beyond traditional thermoset mixing
- Extrusion
 - Constrained system
 - High shear forces
 - Easily scalable to continuous production

CNT dispersion

• Very good CNT dispersion and distribution

Glass transition of modified matrix

Nanocomposite mechanical properties

- Polymer matrix is stiffened
- Increasing strength indicative for good CNT/matrix interface

Nanocomposite fractography

• Rougher surfaces with increasing CNT loading indicate toughening

Hierarchical composite production

- Wet impregnation avoids issues with traditional CFRP processing
- Cryo-milling produces the precursor for powder pregging
- Demonstration of ply production

Production of thermosetting HCs

Filament winding process for HCs

Production of thermosetting HCs

Vacuum assisted hot pressing

Hierarchical composites

3-4 mm laminates with low voidage (< 2%)

But issues: fibre waviness & straightness

Properties of Hierarchical composites

Properties of Hierarchical composites

SEM Fractography

Fracture surface of 10wt% HC after DCB

10 µm EHT WD

10 µ

EHT = 5.00 kV WD = 2.9 mm

Signal A = InLens Mag = 5.00 K X

Date :21 Sep 2012 Time :17:57:06

SEM Fractography

25 wt% CNTs in HC

EHT = 5.00 kV WD = 3.0 mm

Signal A = InLens Mag = 5.00 K X

Date :26 Sep 2012 Time :11:13:21

Car

Conclusion

Thank You!

our funders