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Objective e
Strength Prediction capability for composites Technology Organisation

= Prediction of residual strength after damage
= Optimise damage cutout

= Design of conformal antenna slots

= Design and certification of repairs

e I Wire dipole
B Slot in infinite
e e X-z ground N2
== U plane Callus (DSTO)




Some Examples of Recent Developments Austratian Governcn

stress

= Abaqus damage model (2006)

= Milestone: research—engineering
= Lapczyk and Hurtado (2007):

= Camanho et al (2007): 38.5% accuracy for
tension of bolted joint 0 1

¢ £ strain

= |nherent-flaw fracture mechanics (a) Abaqus-model [§]

= |IBOLT: method of choice at LM Aero o
(Eisenmann and Rousseau 2004) X,

= Empirical correction for countersunk holes
= Continuum damage mechanics X,,

= Camanho et al (2007): 10.5% accuracy for OHT
= Bogert et al (2006): 21.4% accuracy for slits

Fracture
energy

E

(b) VUMAT-model [9]
Camanho et al (2007)



Experiments

Three types of specimens subjected to tension

Straight through-hole (diameter=6.35mm)
Straight through-hole (diameter=50mm)
Scarfed hole (diameter=50—200mm)

Stiff and soft laminates:
= [40/40/20]1%

= [20/40/40]%

Stacking sequences
= Panel: [45/90/-45/0,] 5

= OHT coupons: o=
= [45/0,/-45/90]

« [-45/90,/45/0]
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Experiments e
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Tensile strength of stiff laminates

Strength (ksi)
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Faillure modes
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Strains in straight-hol I o
Department of Defence
. Diefence Science and
Some dUCt|||ty Technology Organisation
1200 35000
565 30-ply panel ./
‘ L [45/90/-45/0/0]3S
SG.4 Oriented i Load
at 45° -+ 30000
1000 ~ - Room Temperature
5G.3 o8 & 50mm hole diamete{
< r0% 500mm wide panel
\O = ' + 25000
800 - Tested 28 May 2008
SG. 2 Inner SG.1 Inner .%
— Hole Edge Hole Edge -+ 20000 7
Z
=3 A inside hole - right S
-‘3 600 - 0.20TYP | X E
S inside hole - left | 15000 _%
n
400 - gauge 3
-+ 10000
200 7 | 5000
gauges
0 0
0 1 2 3 4 5 6 7 8

Crosshead displacement (mm)



Strain in scarfed-hole panel

Suspected premature failure of strain gauges
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Fracture Mechanics Model sustraton Comenment
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Critical flaw determined from fracture energy and ply percentage

Q= oGy + NysGys + Mgy Gy

2
Cﬂaun—notched

O-un—notched

O hotched = f(a/ R)

= Predicted strength is identical to cohesive zone model prediction
» [ndependent of actual bridging law or the softening behaviour

= Reported to be hole-size dependent



|dentification of Fracture Parameters

Predicted strength (MPa)

1 1
Assume: Gi=—-G, Gy =—Cys
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= QOpen hole tension strength of quasi-isotropic laminate
= Data by Mollenhauer et al (CompTest 2006)
= Model does not predict layup effects

800

—~ 600 -
o]
g '
2
< [] 0
)}
$ 400
N
Q
7
c
(7]
= 200 A

m [45/0/-45/90]4 (Mollenhauer et al)

A [0/45/90/-45]4 (Mollenhauer et al)

Fracture mechanics
0 . T
0 5 10 15

Hole diameter (mm)



Predictions o o
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= Large straight-hole and tapered hole
= Significant under-prediction of strength
= Need greater critical flaw size

800
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Abaqus Damage Model —
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Strain-softening model:

— Element=0.1mm
=  Bazant’s crack band model 2000 - — Element=0.4mm
= Best for square elements — Element=0.6mm

Stress (MPa)

= Shell elements: all plies have

Identical strains at any time. 500

= Scarfed region is modelled as 0 ‘ ‘ ‘
multi-stepped (one step per ply 0 05 b L5 2
No bending. Strain

Issues:

= Mesh refinement
= |dentification of fracture energies

= Predictions of through-thickness
geometry variation



Mesh refinement Australian Government
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Straight-hole of 6.35mm diameter | _—
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Identification of Fracture Energies s Gonrmmen
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= Ply fracture energies depend on solver
= Consistency between two stacking sequences
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Explicit versus Implicit R —
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= [mplicit code suffered convergence problems and required damping

= Explicit code more robust, damping not required, but requires large time
Increments to avoid inertia effect

Fundamental resonant (in-plane) period Ty = ZL\/é
Time increment: AT = h\/é

Total time: many times of the fundamental period

Number of increments: N To ~ 2L N

AT h

* Independent of density
» Element size h needs to be small fraction of critical flaw size (e.g., h=0.1 a)
e N=?
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= Run time versus error due to inertia effect
= Error less than 2% requires loading duration about 30 times the fundamental period
» Any disturbance resulting from damage progression reverberates 60 times

0.08
=—¥— Abaqus/Explicit

0.06 ~
2 0.04
L

0.02

0.00 T T T —X

0 20 40 60 80 100

Ratio of run time to fundamental period T/T,



Failure path Avstraian Government

= Straight hole

O degree ply

E07 ai 5:50
aqus/Explicit Version 6.7-1 Wed Sep1014:25:14 EST 2008

= 1.7600E-02

Crack inclined at 11 degrees

Crack inclined at 26 degrees



Failure path Deparimenof e
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0 degree ply

= Scarfed hole

45 degree ply

actor: +1.0002+00



Scarfed and straight-hole panels
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= Abagqus model provided an improvement but under-predicted strength by

20% and the angle of fracture path.
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Quasi-isotropic laminates s Gonrmmen
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= Qver-prediction of strength for large holes
= Using fracture energies “backed-out” from stiff laminate data

= Stacking sequence effect not predicted
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Damage Initiation Model

Aunstraiian Government
Department of Defence
Diefence Science and
Technology Organisation

Difference in fracture path due to incorrect damage initiation model?

= Need alternative failure criterion to model off-axis plies

Hole=12.7mm (G,=160 kJ/m?)

(element=0.2mm)
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= Modified strain-invariant (wang, C.H., Chapter 8, Multi-scale Modelling of
Composite Material Systems, 2005)

(f) (f)
Enm = &,

Fibre tensile fracture (shear failure)

51 < oM

Fibre compression failure (micro-buckling)

Matrix shear failure

Matrix dilatation fracture




Stress-invariant theory

= Comparison with published data

(Wang 2005)
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Damage Progression Model

Maximum strain at hole edge

=  Predicted maximum strain is less than measurement

= Stress-softening law may need modification
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= Fracture mechanics (inherent-flaw) showed promises at dealing
with stacking sequence, but failed to predict effects of hole size
and through-thickness tapering.

= Abaqus damage model under-predicted strength of cutouts larger
than those in calibration coupons.

= Comparison of prediction with experimental data suggests
alternative damage initiation model and damage progression
model.

=  Optimisation technigues may be required to back-out material
properties.

= |mproved solution method needs to be developed to improve
computational efficiency.




