
Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol.

Practical 1: Introduction to

the Stat-JR workflow system

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.2

2

1.1 Overview
These practicals are designed to introduce new users to Stat-JR and in particular to its new workflow

interface. Whilst the new workflow interface is still under development as part of the eBook grant,

much of its structure and functionality is already in place, and today we will introduce the principles

underlying how it works via a number of practical examples. As well as getting a handle on how the

system works, any feedback you pass onto us will be very valuable in helping shape the development

of the workflow system as it progresses over the remainder of the project.

In order to introduce the workflow interface, we will provide an overview of how to use the TREE

(Template Reading and Execution Environment) interface to Stat-JR and will briefly touch on certain

aspects of the Python language (https://www.python.org/) in which large portions of Stat-JR is

written.

The main building block in Stat-JR is the template: a piece of code that performs operations one

might associate with a (statistical) software package. For example, one template might draw a

certain type of graph, whilst another might fit a particular statistical model, and so on. Templates are

the common currency shared by the various Stat-JR interfaces – i.e. they are used in the workflow

system, TREE and DEEP (Documents with Embedded Execution and Provenance) – so it is important

to have an understanding of how they work in order to use Stat-JR. In order to perform its function

appropriately, a template requires inputs from the user (just like a function call in R or Stata, for

instance). For example they typically need to know which variables to use, and might need input

concerning estimation options (for a model fit), plotting options (for a chart), etc. We will begin by

illustrating this using the TREE interface.

1.2 Starting up TREE
To start we will fire-up Stat-JR TREE which we do by clicking on the executable file tree.cmd. When

we do this we will find a command window appears which looks something like the following:

Figure 1

https://www.python.org/

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.2

3

This command window will be where the software is actually running from and will contain

debugging information, but the user interacts with the software via a web browser (although often it

will be running locally on the user’s machine); this should open automatically after a few seconds, as

follows1:

Figure 2

Now clicking on the Begin button will allow you to run the Stat-JR TREE software and the main

screen will look as follows:

1 Stat-JR works best with either Chrome or Firefox, so if the default browser on your machine is Internet
Explorer it is best to open a different browser and copy the html path to it. You can change your default
browser via Settings in the Chrome menu, or via Options > General in the Firefox menu (both menus are
found in top-right of their respective browser windows).

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.3

4

Figure 3

The TREE interface allows the user to try out one template at a time, using one dataset, and you can

see at the top of the screen pull-down menus headed Dataset and Template, and the names of the

template and dataset currently selected by default (tutorial and Regression1). These pull-down

menus allow you to change the template and dataset you are using (and also to view, edit and

summarise the current dataset).

Below the black bar, in the central area of the window, you can see some of the inputs required for

the currently selected template (Regression1), namely the Response and Explanatory variables, and

you can further see that you are being offered variables from the default dataset (the tutorial

dataset) as possible values for some of these inputs.

1.3 Using your own dataset
Below we will be working with one of the sample datasets provided with the Stat-JR package (one

which you may be familiar with from MLwiN, namely the tutorial dataset). However, you might like

to use your own dataset in certain sections (or try out both). The remainder of this section details

how to import your dataset; if you don’t have your own dataset, you can move onto Section 1.4.

Stat-JR works with datasets saved in Stata format, i.e. with a .dta extension. It looks for these in

the...\datasets folder of the Stat-JR install, and also in a folder saved, by default, under your user

name, e.g. C:\Users\YourName\.statjr\datasets (you can change the path via Settings in the black

bar at the top of the browser window in the TREE interface).

If your dataset is already in .dta format (see below), then you can upload it, in TREE, via (i) Dataset >

Upload (menu options in the black bar at the top of the browser window), which will upload it into

the temporary memory cache, or by (ii) saving your dataset in the StatJR\datasets folder, and then

selecting Debug > Reload datasets (again, accessible via the black bar at the top of the browser

window). If, instead, you have it (iii) saved as a .txt file, you can use Stat-JR's LoadTextFile template

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.4

5

to save it into the temporary memory cache (the template LoadTextFileMoreOptions allows you to

specify more particulars, and can also handle string variables).

In the case of options (i) and (iii) the dataset will be available for use in the current session, but you

then need to download it (as a .dta file) via Dataset > Download (e.g. saving it into the

StatJR\datasets folder) for use in the future sessions too.

So, via option (iii) (and downloading), Stat-JR will save your dataset as a .dta file, but you can also

create .dta files via Stata, MLwiN and R (e.g. the foreign package in R).

1.4 Viewing the dataset
You can select your dataset of choice via Dataset > Choose, remembering to press the Use button

once you have selected it from the list.

Once the dataset is selected, if we click on the Dataset menu and click on View we will get a second

tab in our browser as shown:

Figure 4

You can see the top few rows of the tutorial dataset, together with several tabs one could then click

on. Clicking on Summary, for example, produces the following:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.4

6

Figure 5

This gives us, for each of our ten columns in the tutorial dataset, some basic statistics including the

minimum, maximum, mean and standard deviation. In fact one of the first things one might do when

presented with a dataset might be to produce summary statistics. The summary statistics we’ve just

viewed are not actually produced via a template: this dataset summary table is just an in-house

widget the TREE interface has to assist users with their exploratory data analysis (much like the data

viewer in RStudio, which allows the user to explore aspects of their data independent of commands

in the R console). However, various summary statistics can be produced via templates, and we will

do this ourselves as a means of illustrating both the TREE and workflow interfaces to Stat-JR.

Click on the first tab in the browser to return to the screen with the Regression1 inputs showing. If

you now choose the Template menu and click on Choose, a new window will appear that contains a

list of templates (and a cloud of key terms to help pare down the list to those most relevant).

Scroll down and select AverageAndCorrelation from the list and the screen will look as follows:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.4

7

Figure 6

If we next click on Use then the main screen will reappear, but this time asking for the inputs specific

to this template. We can fill these in as follows (Operation: averages; Variables: normexam, girl; or

variables from your own dataset if not using tutorial):

Figure 7

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.4

8

Here we have selected averages (as opposed to calculating correlations) and chosen two variables to

work out averages for. If we then click on Next to confirm the inputs and Run to run the template,

the screen will look as follows:

Figure 8

At the bottom of the screen there is a results pane which displays whatever output object is selected

in the pull-down list just above it. Here we see the Python script (script.py) that has been run to

execute the template. If instead we pick the object table from the pull-down list of outputs then the

screen looks as follows:

Figure 9

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.4

9

So here we have done something really rather simple which is to execute a template that has taken

the two variables we chose and worked out their means and standard deviations; these should

correspond to those we have already seen in the Dataset Summary screen we looked at earlier.

We will shortly use this template in the workflow version of Stat-JR to create a workflow that

performs the same averaging operation. For this we need to pay attention to the names of the

inputs, which you can see in the grey Current input string box and again in the Command box below

(which is how one would run this template with these inputs in the Python command driven version

of Stat-JR).

As this implies, the templates are written such that the input questions asked of the user in the

browser window (in this example, Operation and Variables) might be different to the name the

template actually assigns to those input objects in the background (in this example, op and vars,

respectively). This simply allows the input questions posed of the user to be more expansive than

the underlying assigned names, which may be shorter to spare the coder’s fingers and allow for

coding efficiency. We’ll have a look at the template itself in a moment to illustrate how this

distinction is realised in its code.

So using TREE is a useful way to test out a template and find the names of the inputs it requires, and

the names of the output objects too (via the pull-down list above the results pane); i.e. we now

know:

 The name of the template: AverageAndCorrelation

 The inputs it requires:

o op, which we assigned the value averages

o vars, which we assigned the value normexam, girl

 The name of the template’s output most relevant to us: table

We will soon open up the workflow interface and build a simple workflow from scratch using this

information, but we hope that in future you will be able to immediately save a workflow of your

executions in TREE for direct translation into the workflow system.

As well as gleaning a template’s required inputs by running the template in TREE, however, you can

also retrieve that information by looking at the code in the template file itself. In the Stat-JR

directory from which you ran TREE, you will see there is a subdirectory called templates. In this

subdirectory there will be a Python file for each template; for example AverageAndCorrelation.py

contains the Python code for the template we’ve just run. If you open this file you will see the

Python code as shown below:

Copyright (c) 2013, University of Bristol and University of Southampton.

from EStat.Templating import Template

class TemplateAverages(Template):

 'Choose to either calculate mean averages and standard deviations, or correlations, for

selected variables.'

 __version__ = '1.0.0'

 tags = ['Summary stats', 'Correlation', 'Averages', 'Standard deviation']

 engines = ['Python_script']

 inputs = '''

op = Text('Operation: ', ['averages', 'correlation'])

vars = DataMatrix('Variables: ')

'''

 pythonscript = '''

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

10

import numpy

import numpy.ma

import EStat

from EStat.Templating import *

tabout = TabularOutput()

if op == 'averages':

 tabout.column_headings = ['name', 'count', 'mean', 'sd']

 for i in range(0, len(vars)):

 var = datafile.variables[vars[i]]['data']

 tabout.add_row(vars[i], [len(var), var.mean(), var.std()])

if op == 'correlation':

 invars = numpy.ma.row_stack([datafile.variables[var]['data'] for var in vars])

 corrs = numpy.corrcoef(invars)

 tabout.column_headings = ['name']

 for j in range(0, len(vars)):

 tabout.column_headings.append(vars[j])

 for i in range(0, len(vars)):

 row = []

 for j in range(0, len(vars)):

 row.append(corrs[i, j])

 tabout.add_row(vars[i], row)

outputs['table'] = tabout

'''

Here you can see that the template code is structured such that it includes an inputs section where

you can see both the prompts asked of the user (Operation and Variables) and, importantly, the

names the template assigns to the values provided by the user to those prompts (op and vars,

respectively; all highlighted in yellow); i.e. the latter names are the same as those appearing in the

Current input string box in TREE. You can also see why we were offered a choice of averages or

correlation as values for op, since these are coded as the options to be presented to the user.

Below that you will find a section of the code called pythonscript; this contains the Python code

executed once the inputs defined in the section above have all been completed (i.e. had values

assigned to them) by the user (you can see that the objects op and vars are used in this section, so

the template cannot run to completion unless the user has provided values for them). On the last

line of this section you can see the output name of interest (table; again highlighted in yellow),

which is one of the outputs which appeared in TREE.

So at this stage you will see that there are two ways (via TREE, and via the template code itself) to

find out the information we will need in the next section, when we write a workflow to execute the

same operation.

1.5 STAT-JR Workflows
We will now open the workflow interface to Stat-JR. If you return to the main Stat-JR directory you

will see that there is another executable described as wf.cmd. Clicking on this executable will fire-up

another command window which will contain debugging commands and another web browser

window for the workflow version of Stat-JR, as shown below:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

11

Figure 10

The workflow version of Stat-JR is still using Python as the code in the background but the web

interface is using a program called Blockly (developed by Google;

https://developers.google.com/blockly/; https://blockly-games.appspot.com/); this is a visual

programming system that involves using blocks to represent operations, and has been used by a

variety of applications as an aid to help people learn to code.

Here we will begin illustrating the workflow system by replicating the averaging we did in the TREE

interface. The window shown above contains menus at the top and a panel to the left that contains

a palette of blocks. If you click on the terms to the left you will see that blocks appear, e.g. clicking

on Control results in the screen looking as follows:

https://developers.google.com/blockly/
https://blockly-games.appspot.com/

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

12

Figure 11

We will begin our workflow with the Start block whose simple purpose is to indicate the start of the

workflow. To use it, click on it with the left mouse button and, holding down the button, drag it

across to the white area; the window should now look thus:

Figure 12

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

13

So we have a start (literally) but we need a dataset. In this example we will use the tutorial dataset

we used earlier in TREE, but you can use a dataset of your own choice if you prefer. If you click on

Data Preparation in the left-hand menu, you will see a block entitled Select dataset. Click on this

block and drag it to below the Start block, so it will be the next block used in the workflow

(workflows run sequentially downwards). It should join to it with a satisfying clicking noise (if your

speakers are on), and visually ‘snap’ into place. The screen will look thus:

Figure 13

In fact, one of the strengths of using Blockly to realise Stat-JR’s workflow system is that many of the

syntactical rules are inherent in the shape of the blocks, and their readiness to fit together. The

Select dataset block you have just introduced, for example, has a slot on its right-hand side, like the

side of a jigsaw piece. As you might imagine, this can only take another block which is appropriately

shaped to fit into that slot. However, it can’t take any such block: for example if you try to fit the not

block (from the Logic menu) into this slot, you’ll see it resists, like trying to join like poles of two

magnets:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

14

Figure 14

Clearly, this is the wrong sort of block (if you wish to tidy it away, you can select it and press the

Delete button on your keyboard, or you can drag it to the bin in the bottom right corner - the bin will

open and if you let go of the mouse button it will swallow the blocks!) As it happens, what we need

is a text block in which we can write the name of our dataset. If you click on Text in the left-hand

menu, you will see a list of blocks; select the first one, which is a blank text string, and drag it so that

it slots (successfully this time) into the Select dataset block thus:

Figure 15

Next we can type in the name of our dataset of choice, in our example tutorial:

Figure 16

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

15

We will next include inputs for our template (we will nominate the particular template we wish to

user later); we do this via the Set Input block which can be found in the Models menu, resulting in

the following:

Figure 17

You will see that the Set Input block has two gaps: here we need to add blank text blocks from the

Text list to the left thus:

Figure 18

In fact, we have two inputs to set up so this gives us the opportunity to show another feature of the

workflow system. If you right-click on the Set Input block you can choose Duplicate from the menu

that appears and a copy of the block (with embedded text blocks) appears (alternatively you can

select the block(s) you wish to duplicate and press Ctrl-C then Ctrl-V to copy and paste). If you attach

this to the workflow the screen will look as follows:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

16

Figure 19

We can now fill in the inputs we noted earlier, namely “op” which takes value “averages”, and “vars”

which takes value “normexam, girl”, resulting in the workflow now looking as follows:

Figure 20

Next we add the template we wish to execute with these inputs; this currently requires the selection

of the black Template block from the Dummy menu. This will run whatever template is named in a

block appended to the right of it, and so we add a text block to this with the name

AverageAndCorrelation thus:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

17

Figure 21

Finally we want to display an output resulting from the template’s execution. This is done via the

Show block from the Output menu. Put this on the end of the workflow, together with an embedded

text block in which we will type our output name (“table”) thus:

Figure 22

This is our complete workflow and at this point it would be good to save it, so click on Save and

choose a name (we will name it after this section of the practical, and choose prac1_5.xml) thus:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.5

18

Figure 23

You will be asked for a directory, so store this file somewhere you know where to find it!

Now, clicking on the Run button will execute the workflow which will bring up another tab in the

browser; in our example it looks as follows:

Figure 24

The current output from workflows is a little crude: essentially we get a list starting with “Block 1”

and numbered through to “Block 5”, corresponding to the five blocks (counting vertically,

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.6

19

downstream from the Start block) in the workflow. The final Show block (Block 5) returns our

requested table: this is the same as the output we saw in TREE.

1.6 Making our workflow interactive
As things stand we have made what is effectively a log of what we did in TREE and for which there is

no interactivity. Next we will show how we can make the workflow interactive by asking the user

which variables they want to use to calculate the averages.

We will firstly do this rather crudely: click on the first tab to return to the workflow creation screen.

Now click on the textual block that contains normexam, girl and holding the mouse button drag it to

the waste bin in the bottom right of the pane. The screen will now look as follows:

Figure 25

There is a gap in the inputs and this time clicking on Run the workflow stops at that point thus:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.6

20

Figure 26

If we click on standlrt and schgend (or variables of your choice) and then Submit then the workflow

will execute and look as follows:

Figure 27

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.7

21

And thus we have created a workflow that will ask the user for variables (from the tutorial dataset,

in our example) and then produce their means and standard deviations.

1.7 Adding question blocks
If we want to change how we ask for an input – i.e. the prompt presented to the user – from within

the workflow (cf. changing the code in the template itself) then instead of leaving the slot in the Set

Input block empty, we can instead add a question block. So from the Input list of blocks select the

Ask multiple variables2 block from the list and drag it to fill the hole we left in the Set Input block.

You will see that the Ask multiple variables block has a blank box in which you can type your

question thus:

Figure 28

Running the workflow will then prompt the user with this question, as we see below:

Figure 29

2 We’re using the Ask multiple variables block here as it allows the user to select more than one variable in
their answer; the Ask single variable block only allows the user to select one variable.

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.8

22

Here if we answer the question we will once again get a fourth block showing the means and

standard deviations for the selected variables.

1.8 Plotting a histogram
We will now move on from working with the AverageAndCorrelation template and turn our

attention to trying a second template and placing it in a workflow. This will be another operation

one might do when beginning to look at a dataset, namely plotting a histogram of a variable to

assess the shape of its distribution. Again we will first do this in TREE before moving across to the

workflow system.

If you don’t have TREE still active you will need to restart it. In the main TREE window we will need

to choose the Histogram template from the list, so click on the Template list and click on Choose and

highlight Histogram as shown:

Figure 30

Now click on Use and the inputs for the Histogram template will appear. In our example we will

choose normexam as the Values for which we wish to plot a histogram, and 15 for the Number of

bins. Clicking on Next and Run, and selecting histogram.svg from the object list, gives the following

screenshot:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.8

23

Figure 31

So here we have the inputs that we require (vals and bins) along with the output that we want to

show (histogram.svg; again you could glean this information by looking at the template code itself in

the templates directory if you so wished).

We will now return to the workflow system with our workflow for the averages still visible. Rather

than start from scratch we will break up the current workflow by clicking on the Set Input block for

“op” and moving it and the following blocks to the right so that the screen looks as follows:

Figure 32

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.8

24

The workflow system doesn’t currently have a separate place to store fragments of workflow;

however, only those blocks that are contiguous with the Start block will be executed by the Run

button, so effectively we’ve rendered these inactive by removing them from the workflow stream;

i.e. we’re simply storing them to the side for now. We will next add the blocks to produce the

histogram. These will look similar to those for the first workflow as we will need two Set Input blocks

(from the Models list), one Template block (from the Dummy list) and one Show block (from the

Output list) along with several text blocks (from the Text list; alternatively we can duplicate blocks

we already have elsewhere in the central workflow pane, and modify as appropriate).

We show below the workflow and so see if you can replicate it for yourself:

Figure 33

To test it out we click on the Run button and get the following:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.9

25

Figure 34

Here the initial comment that “Extra code is ignored” is simply the system telling us that there are

blocks on the workflow screen that aren’t currently part of the workflow (i.e. it’s detected that we

detached some from the active workflow headed by the Start block). We then see, in block five, the

histogram we requested. It would be good to save your workflow at this point, so return to the main

workflow window and click on Save. This time save it as prac1_8.xml.

1.9 Connecting up the operations
We have now created two workflows and an obvious next step is to join them together. Fortunately

we have both workflows on the screen and so we can quite easily join them. Have a go at doing this

yourself to produce the following:

Figure 35

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.10

26

If we press Run, and then answer the question when prompted (here I have chosen just normexam)

we will see that both operations are done thus:

Figure 36

1.10 Using variables in a workflow
So we have now seen how we can join up two template executions in one workflow and it is easy to

continue this with further operations to create a logfile-style workflow to replicate your analysis. As

mentioned earlier, in the future we hope to add a feature into TREE so that this is done

automatically.

We have investigated how to ask questions to replace hard-wired inputs and add an element of

interoperability. A natural extension of this is to ask a question where the answer is shared by

several templates downstream. To do this we will introduce the concept of variables within a

workflow and illustrate it by constructing a workflow that asks for a single input and then produces

its average and its histogram.

You will see in the lists to the left there is a menu entitled Variables and in this list is a red set <item>

to block. Grab a copy of this block and place it in your workflow under the Select dataset block (if

you place it in the approximate area and let go of the mouse button it should be added into the

workflow thus):

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.10

27

Figure 37

By default the variable is called item but we can change this by clicking on the pull-down arrow to

the side of it and selecting New variable… A window appears where we can enter a name; we will

choose response:

Figure 38

Clicking on OK will select response as our variable name. We now need to assign it a value (in this

case the answer to a question), and so from the Input list select Ask single variable and move it to

the right of response. We can then add the question text as shown below:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.10

28

Figure 39

This has created a variable (called response), the value of which will be whatever the user chooses

when prompted by the question “What is your variable of interest?” However, before running this

workflow, we first need to slot this variable (response) into places in the workflow where it is to be

used (as the values for inputs vars and vals, for example). Have a go at doing this yourself (you’ll

need a new type of block from this list on the left). The completed workflow looks as follows:

Figure 40

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

29

Hopefully you managed to find the block you needed.3 We can now save this workflow as

prac1_10.xml before clicking on the Run button to run the workflow. In our example we’ve chosen

avslrt in answer to the question:

Figure 41

Here we see the mean and then a histogram for the avslrt variable; i.e. it’s taken our answer and

used it as input for two template executions.

1.11 Running a statistical regression model and showing predictions
We will now move on to actually fitting a statistical model in Stat-JR. We will continue our approach

of adding to our current workflow. We have so far seen how we can put together a sequence of

operations in one workflow but up to now outputs from one template execution have not yet been

used as inputs for the next template execution. We will remedy that by illustrating how to create

predictions for our regression model based on the model fit.

We will begin by returning to TREE to fit a model using Stat-JRs built-in eStat MCMC engine. To do

this we will use the Regression1 template to fit a simple regression. The Regression1 template

requires the user to include a constant in their list of predictors if they want to fit an intercept. As it

happens, the tutorial dataset we have been using has a constant of ones (the variable cons) which

we could use, but since you may be using your own dataset which might not have a constant already

in it, we’ll show how to add a constant to the dataset using the template Generate.

3 Look under the Variables list. Once you’ve chosen the correct block, you can change the name away from
item by selecting response from the drop-down list in the block.

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

30

Here, having selected the template Generate in TREE, we request our constant of ones as follows:

Figure 42

On pressing Run we create a variable consisting solely of ones called intercept in a new dataset

called my_dataset (which is exactly the same as our original dataset, but with the new variable

appended to the end; you can inspect the dataset either by selecting my_dataset from the pull-

down list of outputs to view it in the results pane, as shown above, or by choosing Dataset > View

once you have selected it as the current dataset via Dataset > Choose).

Selecting this modified dataset (my_dataset) from the list of datasets, and Regression1 from the list

of templates, we can now include this new variable as one of our predictors, setting up the inputs as

follows:

Figure 43

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

31

Here we are using the default settings for our MCMC estimation procedure4, although we answer

Yes to the prompt Generate a prediction dataset. Clicking on Next and Run will run the model and

choosing ModelResults gives a summary of the model we have fitted thus:

Figure 44

As before, the list of inputs can be viewed in the Current input string box and we will need to include

all these in our workflow to replicate the regression fit5. There are also a lot more outputs in the

pull-down list that we might like to include in the workflow via Show blocks too.

So first we will return to the Stat-JR workflow system and continue with our existing workflow and

add blocks to the end of it as follows (we’ve blown up the latter part of the workflow so that you can

see the details):

4 This particular template can only use this estimation engine, although many others can use a wide variety of
third-party software, including R, Stata, MLwiN, etc.
5 Note that the workflow system has a Model Fit block which can be used instead of the Template block which
fills in defaults for some of the (estimation) inputs, but we will not use this here (as our general aim is to make
explicit the connection between operations in TREE and the workflow system).

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

32

 –

Figure 45

Here, then, we are again assuming we don’t already have a constant in our dataset, and so we first

add one using the Generate template as we did before. We then need to change the working dataset

name to that of our new dataset with our constant in it. This is done by appending the Retrieve block

(found in the Other menu) to the end of the Select dataset block. The Retrieve block retrieves a

named object from whatever stage of the workflow execution is cited in the block. Thus we have to

give the object name we want (my_dataset) and tell it which block to take this from. We perform the

latter by referencing a unique number each block is assigned – it’s the black Template block we need

to reference (the one to which “Generate” is appended) and in the example in the screenshot this is

number 38. This number will likely be different for you: you can find out by selecting the block you

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

33

need to reference and seeing which number pops up in the right-hand pane (see Figure 46). These

referencing numbers may change as you move blocks around and add new sections, but it will

always reference correctly (i.e. if the number of a block changes, then this will be automatically

updated in the Retrieve block itself). Note our choice of last in the Retrieve block simply tells the

workflow to take the version of the object created the last time this block was executed (this

becomes important within loops where the same block is called more than once).

Figure 46

Here we have ordered the inputs in the same order as the questions in TREE (this isn’t necessary for

the template to execute correctly, it just helps us ensure we included them all!) We can use the

response variable we defined earlier as the input for “y”. We will Save this workflow as prac1_11.xml

and then Run it (in this example choosing normexam as our variable of interest). Note that it will

take a little longer for this workflow to finish its execution, and nothing will appear until the

workflow has finished. If you scroll down to the bottom of the window after running it, it will look as

follows:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.11

34

Figure 47

So we see the results that we saw within TREE, from our model fit, appearing in the final block of the

output.

The Show block is not the only way to see outputs; we can view any of the output objects from the

regression model fit via the pull-down list under the block above (Block 27 in this example) which

represents the Regression1 template run. For example if we choose equation.tex we get the

following output:

Figure 48

The only difference with this and the Show block is that the pull-down list is interactive, but it can

only display one object at a time (whereas you could append several Show blocks on top of each

other).

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.12

35

1.12 Adding predictions to the workflow
Going back to the TREE interface, since we selected the option to generate a prediction dataset we

can look at the predictions graphically. The Regression1 template has created a dataset object called

prediction_dataset which we can select from the list of datasets in TREE (it will be in darker font to

indicate it has been generated by the software and is loaded in the current session). Having chosen

this as our dataset in TREE (it should appear in the black bar at the top once you have selected it) we

can perform operations on it – e.g. plot predictions – by choosing an appropriate template (we will

choose XYPlot) via the usual means.

Having chosen XYPlot, we can now set Y values to plot both the prediction and the original response

variable (pred_full and normexam, in our example) and the X values to be our predictor variable of

interest (standlrt, in this example). Clicking on Next and Run will give the following (if we select

graphxy.svg from the list):

Figure 49

Here we see the data in green and the regression line in blue.

So, to add this to the workflow we will need to change dataset (to the prediction_datafile generated

by the template). Let’s return to the workflow interface and add the following to our existing

workflow:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.12

36

Figure 50

As before, then, we change the dataset name via the Select dataset block, appending a Retrieve

block to the end of it, and specifying in that block that we want to use the output object called

prediction_datafile from the relevant template execution (the black Template block which runs the

Regression1 template).

For the graph, the input names and output objects are those we saw in TREE – we will leave these to

you to add (remember to choose the corresponding template too; if in doubt, see Figure 52 in the

Appendix). Save the resulting workflow as prac1_12.xml and then click on Run to see what happens

(in our example we again choose normexam when prompted). At the end of the run output you will

see the prediction plot thus:

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.13

37

Figure 51

So here we have demonstrated how we can link together output (via an outputted dataset) from

one template as input for another template.

1.13 What have we covered?
From this first session you should now be comfortable with using Stat-JR TREE: selecting a dataset

and template, entering inputs, running it and inspecting the outputs. We’ve investigated how to use

this information (the dataset, template, inputs and outputs of interest) to replicate the same

operations in the Stat-JR workflow system. In doing so we have covered:

 how to find and append blocks;

 duplicating and deleting blocks;

 saving workflows;

 including questions in workflows;

 using the same variable more than once in a workflow;

 retrieving output from one template execution for use in a later template execution;

 the functional relevance of the Start block.

Stat-JR Workflow & eBook Workshop 3rd Sept 2015, Bristol. Practical Workbook 1 – Section 1.15

38

1.14 What’s next?
In the next practical we will build on what we have covered and think about creating more

interactive, generalised workflows for fitting regression models and also introduce the idea of a

statistical analysis assistant. In doing so, we will also explore more of the workflow system’s

functionality.

1.15 Appendix
From Section 1.12, here’s the end of the workflow with our prediction-plotting blocks added to it;

remember to save the workflow as prac1_12.xml.

Figure 52

