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Plan for the day
Part 1

• Introduction to small area estimation - Concepts

• Direct and model-assisted estimation

• Introduction to model-based methods
• Unit-level models - The Battese-Harter-Fuller model
• Area-level models - The Fay-Herriot model
• Methods for non-linear statistics
• Applications to Poverty mapping including alternative data forms

(remote sensing data)

• Variance and Mean Squared Error estimation

• Applying the methods - R computing
• Computer practical

Small Area Estimation 2 / 82 NCRM Training - University of Bristol 2 / 82



Plan for the day

Part 2

• Introduction to MCMC, STAT-JR & ebooks
• Unit-level SAE models in STAT-JR
• Interoperability with R
• Computer practical
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Introduction to SAE, Direct & Model-assisted Estimation

1 – Introduction to SAE, Direct & Model-assisted
Estimation
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Introduction to SAE, Direct & Model-assisted Estimation

Introduction

• Statistical models are used to study the relationship between a
response variable and a set of predictor variables

• However, data (e.g. survey data) are also used to estimate finite
population parameters

• Examples: Average income; unemployment rate; at-risk-of-poverty rate
for
• Large populations and
• Smaller sub-populations (areas/domains)
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Introduction to SAE, Direct & Model-assisted Estimation

Introduction

• Estimates for small areas are referred to as small area statistics
• The research field is called small area estimation (SAE)

• Areas or Domains often correspond to
• Socio-demographic groups: E.g. age by gender groups
• Geographic domains (areas): Provinces, municipalities, school districts,

health service areas
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Introduction to SAE, Direct & Model-assisted Estimation

Contains OS data © Crown copyright 2018
Contains LPS Intellectual Property © Crown copyright and database right (2018). This information is licensed

under the terms of the Open Government Licence (www.nationalarchives.gov.uk/doc/open-government-licence/version/3).
Contains Open Data boundaries supplied by OSi (http://data-osi.opendata.arcgis.com/) and generalised by ONS (https://creativecommons.org/licenses/by/4.0/legalcode).

Council areas in Scotland and local government districts in Northern Ireland
are equivalent to unitary authorities in England and Wales, but are shown separately.
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Please visit the Open Geography portal to browse or download available
boundaries or other geographical products:

Counties shown include metropolitan counties for completeness of
coverage. Metropolitan county councils were abolished in 1986, but the
county areas are still recognised for statistical purposes.
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Introduction to SAE, Direct & Model-assisted Estimation

Demand for small area statistics

• Demand for area statistics has increased due to their use in
• Formulating social and economic policies
• Allocation of government funds
• Regional planning
• Business decision making (e.g. many small businesses rely on

information about local socio-economic conditions)

• SAE is a fast growing area of methodological research
• Productive cooperation between academia and practitioners
• Significant progress with uptake of SAE methods by National

Statistical Institutes
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Introduction to SAE, Direct & Model-assisted Estimation

Unemployment rates for UK Local Authority Districts

• Labour market statistics
• Computed by combining survey and administrative data
• Produced by the UK Office for National Statistics
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Introduction to SAE, Direct & Model-assisted Estimation

Initial triplet of estimates

1. Direct estimators of the mean
• Hajek-Brewer Ratio estimator (No auxiliary information)

ˆ̄θDirect
i =

( ni∑
j=1

yij/πij
)
/
( ni∑
j=1

1/πij
)

• GREG estimator (Auxiliary information)

ˆ̄θDirect
i ,GREG =

1
Ni

ni∑
j=1

wijyij ,wij = gij/πij ,

gij = 1 + (X −
∑
i

ni∑
j=1

xij/πij)T (
∑
i

ni∑
j=1

xijxTij /πij)
−1xij
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Introduction to SAE, Direct & Model-assisted Estimation

Initial triplet of estimates

2. Synthetic estimators

• No auxiliary information

θ̂Synthetici = θ̂L

• Auxiliary information
θ̂Synthetici = x̄T

i β̂,

β̂ = (
∑
i

ni∑
j=1

xijxTij /πij)
−1(
∑
i

ni∑
j=1

xijyij/πij)

3. Composite estimator

θ̂Composite
i = αi θ̂

Direct
i + (1− αi )θ̂

Synthetic
i
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Introduction to SAE, Direct & Model-assisted Estimation

Complex indicators: Head count ratio

• The Head Count ratio (HCR) also known as the at-risk-of-poverty-rate
(ARPR).

• The HCR depends on a poverty threshold (at-risk-of-poverty threshold,
ARPT), which is set at 60% of the national median income.

ÂRPT = 0.6 · q̂0.5,

where q̂0.5 is the median.

ĤCR =

∑
j I (yj < ÂRPT )wj∑n

j=1 wj
· 100
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Introduction to SAE, Direct & Model-assisted Estimation

Complex indicators (Income inequality): Quintile Share
Ratio

For a given sample, let q̂0.2 and q̂0.8 denote the weighted 20% and 80%
quantiles, respectively. Using index sets I≤q̂0.2 and I>q̂0.8 , the quintile share
ratio is estimated by

Q̂SR =

∑
j∈I>q̂0.8

wjyj∑
j∈I≤q̂0.2

wjyj
.
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Introduction to SAE, Direct & Model-assisted Estimation

EU-SILC survey: Austria

• The European Union Statistics on Income and Living Conditions
(EU-SILC) is one of the most well-known panel surveys and is
conducted in EU member states and other European countries.
• It is used as a basis for computing Laeken indicators, a set of

indicators for measuring risk-of-poverty in Europe. In particular,
- Inequality: Quintile share ratio or Gini coefficient.
- Poverty: At-risk-of-poverty-rate (head count ratio) or Poverty Gap.

• The survey serves as a starting point for the Europe 2020 strategy for
smart, sustainable and inclusive growth.
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Introduction to SAE, Direct & Model-assisted Estimation

Datasets: Austrian EU-SILC

• The dataset contains 14,827 observations from 6000 households.
• Sample consists of 28 most important variables containing information

on
- Demographics
- Income
- Living conditions

• The data are synthetically generated from the original Austrian
EU-SILC data from 2006.
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Introduction to SAE, Direct & Model-assisted Estimation

Austrian EU-SILC variables

Variable Name

Equivalized household income eqIncome
Region db040
Household ID db030
Household size hsize
Age age
Gender rb090
Self-defined current economic status pl030
Citizenship pb220a
Employee cash or near cash income py010n
Cash benefits or losses from self-employment py050n
Unemployment benefits py090n
Old-age benefits py100n
Equivalized household size eqSS
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Introduction to SAE, Direct & Model-assisted Estimation

Income dataset from Mexico

• The data covers one of the 32 federal entities in Mexico; State of
Mexico (EDOMEX).

• Household level survey data with income outcomes and potential
covariates (ENIGH survey).

• Survey uses a stratified simple random cluster sample.
• The law requires access to estimates for each municipality.
• 125 municipalities in EDOMEX, 58 are part of the sample, 67 are out

of sample.
• The survey includes 2748 households and 115 variables.
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Introduction to SAE, Direct & Model-assisted Estimation

Mexico and the State of Mexico
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Introduction to SAE, Direct & Model-assisted Estimation

Computation - Direct domain estimation with R

• R package laeken can be used for direct estimation of linear and
non-linear domain indicators

• One feature of laeken is that indicators can be computed for
different subdomains (regions, age or gender).

• All the user needs to do is to specify such a categorical variable via the
breakdown argument.

• Note that for the Head count ratio, the same overall at-risk-of-poverty
threshold is used for all subdomains.
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Introduction to SAE, Direct & Model-assisted Estimation

Using R-package laeken: QSR at domain level

> # QSR - breakdown by NUTS2
> qsr("eqIncome", weights = "rb050", data = eusilc,

breakdown="db040")
Value:
[1] 3.971415

Value by domain:
stratum value

1 Burgenland 5.073746
2 Carinthia 3.590037
3 Lower Austria 3.845026
4 Salzburg 3.829411
5 Styria 3.472333
6 Tyrol 3.628731
7 Upper Austria 3.675467
8 Vienna 4.705347
9 Vorarlberg 4.525096

Small Area Estimation 20 / 82 NCRM Training - University of Bristol 20 / 82

Reference: Alfons and Templ (2013)



Introduction to SAE, Direct & Model-assisted Estimation

Quintile share ratio breakdown by NUTS2

Quintile Share Ratio

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

National Quintile share ratio: 3.97
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Introduction to SAE, Direct & Model-assisted Estimation

Variance estimation

Measures of uncertainty

• Variance,
• Coefficient of Variation
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Introduction to SAE, Direct & Model-assisted Estimation

Variance estimation

Resampling methods
• Jackknife
• Bootstrap

Analytic methods
• Taylor linerisation
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Introduction to SAE, Direct & Model-assisted Estimation

Using R-package laeken: Variance estimation

> hcr_nuts2<- arpr("eqIncome", weights = "rb050",
breakdown = "db040", data = eusilc)

> variance("eqIncome", weights = "rb050", breakdown = "
db040", design = "db040",

+ data = eusilc, indicator = hcr_nuts2, bootType
= "naive", seed = 123,R=500)

Value by domain:
stratum value

1 Burgenland 19.53984
2 Carinthia 13.08627
3 Lower Austria 13.84362
...
6 Tyrol 15.30819
7 Upper Austria 10.88977
8 Vienna 17.23468
9 Vorarlberg 16.53731
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Reference: Alfons and Templ (2013)



Introduction to SAE, Direct & Model-assisted Estimation

Using R-package laeken: Variance estimation

Variance by domain:
stratum var

1 Burgenland 3.2426875
2 Carinthia 1.2348834
...
7 Upper Austria 0.3499630
8 Vienna 0.5600269
9 Vorarlberg 2.0032567

Confidence interval by domain:
stratum lower upper

1 Burgenland 16.296501 23.13324
2 Carinthia 10.679302 15.24175
...
7 Upper Austria 9.720091 12.07298
8 Vienna 15.662437 18.62901
9 Vorarlberg 13.560864 19.14820
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Introduction to SAE, Direct & Model-assisted Estimation

Are the results reliable?

One way of measuring the quality of estimates is by using the coefficient
of variation (CV).
The CV is defined as the ratio of the estimated standard deviation σ̂ to the
point estimate θ̂:

ĈV = 100× σ̂

θ̂

• Rule of thumb: CV up to 20% or 25% → reliable
• Cautious use of CV depending on the size of point estimates
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Introduction to SAE, Direct & Model-assisted Estimation

Problems with direct estimation

• Often the sample not large enough for domain estimation
• Design of the survey does not account for competing interests

regarding the targets of estimation
• Not all domains of interest include sampled units
• Small sample sizes → Large variance of direct estimates
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Introduction to SAE, Direct & Model-assisted Estimation

An example: Poverty mapping in Mexico

• 125 municipalities in state of
Mexico. Only 58 are included in the
survey
• For the municipalities in the sample,

the average sample size is 47
households
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Introduction to SAE, Direct & Model-assisted Estimation

An example: Poverty mapping in Mexico

Direct estimates of average household equivalised income and CVs
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Model-based Methods

2 – Small Area Estimation - Model-based methods
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Model-based Methods

Recap

• Domain: sub-population of the population of interest planned or
unplanned

- Geographic areas (e.g. Regions, Provinces, Municipalities, Health
Service Area)

- Socio-demographic groups (e.g. Sex, Age, Race within a large
geographic area)

- Other sub-populations (e.g. the set of firms belonging to an industry
subdivision)

Direct estimators may be unreliable due to small sample sizes
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Model-based Methods

Types of models & Data requirements

Unit-level models
• Use unit-level data (e.g. from surveys) for model fit
• Area level covariates (predictor variables)
• Sufficient for estimating small area averages/proportions
• Access to unit-level data → possible confidentiality issues

Area-level models
• Use only area-level data for model fit and SAE
• Model specified at the area-level
• Data access possibly less complex than access to unit-level data

In this session we focus on the estimation of small area averages
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Model-based Methods

Unit-level models: Battese-Harter-Fuller model

Key Concept:
Include random area-specific effects to account for between area variation/
unexplained variability between the small areas.

Random effects model:
Notation: (i =domain, j =individual)

yij = xTij β + ui + eij , j = 1, ..., ni , i = 1, ...,m

• Random effects ui ∼ N(0, σ2
u)

• Error term eij ∼ N(0, σ2
e )
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Model-based Methods

Unit-level models: Battese-Harter-Fuller model

Empirical Best Linear Unbiased Predictor (EBLUP) of ȳi is

θ̂BHFi = ŷ i = N−1
i

{∑
j∈si

yij +
∑
j∈ri

ŷij

}
= N−1

i

{∑
j∈si

yij +
∑
j∈ri

(xT
ij β̂ + ûi )

}
where

β̂ = (XT V̂
−1
X)−1XT V̂

−1
y

û = σ̂2
uZ

T V̂
−1

(y − Xβ̂)

V̂ = σ̂2
uZZT + σ̂2

e I n
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Model-based Methods

Analytic MSE estimation: The Battese-Harter-Fuller model

An MSE estimator of the small area estimator of the mean under BHF is
(see Prasad & Rao, 1990)

MSE (θ̂BHFi ) = g1i + g2i + g3i

• g1i , g2i uncertainty of BLUP, treating variance components as known
• g3i uncertainty due to estimation of the variance components

Remark: Alternatively (for more complex models) use bootstrap or
jackknife methods
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Model-based Methods

Using R-package sae: The Battese-Harter-Fuller model

Using the EU-SILC data

> # Direct estimation of mean using sae-package
> fit_direct<-direct(y=eqIncome,dom=region,data=eusilcS_

HH,replace=T)
>
> # Estimation of the Unit-level model (Battese-Harter-

Fuller)
> fit_EBLUP<-eblupBHF(formula=as.numeric(eqIncome)~py010n

+ py050n+hy090n,dom=region,data=eusilcS_HH,meanxpop=
Xmean,popnsize=Popsize)

>
> # MSE estimation of the Unit-level model
> MSE_EBLUP<-pbmseBHF(formula=as.numeric(eqIncome)~py010n

+ py050n+hy090n,dom=region,data=eusilcS_HH,meanxpop=
Xmean,popnsize=Popsize)
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Model-based Methods

Using R-package sae: The Battese-Harter-Fuller model

> # Comparison of direct and EBLUP
Domains Direct EBLUP_est CV EBLUP_CV

Burgenland 15781.61 20954.84 18.45 5.47
Lower Austria 20476.21 20727.56 6.45 5.21

Vienna 18996.19 21022.50 5.09 5.39
Carinthia 20345.62 20526.51 9.01 5.74

Styria 21184.01 20839.66 6.64 5.42
Upper Austria 21074.00 21433.11 5.36 5.75

Salzburg 18716.99 20841.91 7.41 5.74
Tyrol 18060.43 20805.72 10.38 5.32

Vorarlberg 18922.28 22028.77 10.69 5.93

Small Area Estimation 37 / 82 NCRM Training - University of Bristol 37 / 82

Reference: Molina and Marhuenda (2015)



Model-based Methods

Area-level models: The Fay-Herriot model

Sampling model
θ̂directi = θi + ei

• θ̂directi is a direct design-unbiased estimator, for instance the
Horvitz-Thompson / Brewer estimator
• ei is the sampling error of the direct estimator

Linking model

θ̂directi = xiβ + ui + ei , i = 1, . . . ,m,

where ui ∼ N(0, σ2
u) and ei ∼ N(0, σ2

ei
), with σ2

ei
assumed known
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Model-based Methods

Area-level models: The Fay-Herriot estimator

The EBLUP under the Fay-Herriot (FH) model is obtained by

θ̂FHi = xT
i β̂ + ûi

= γi θ̂
direct
i + (1− γi )xT

i β̂
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Model-based Methods

Analytic MSE estimation: The Fay-Herriot model

An MSE estimator of the small area estimator of the mean under BHF is
(see Prasad & Rao, 1990)

MSE (θ̂BHFi ) = g1i + g2i + g3i

• g1i , g2i uncertainty of BLUP, treating variance components as known
• g3i uncertainty due to estimation of the variance components

Remark: Alternatively (for more complex models) use bootstrap or
jackknife methods
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Model-based Methods

Using R-package sae: Fay-Herriot
Based on a synthetic population

> # Direct estimation of mean using sae-package
> fit_direct<-direct(y=eqIncome,dom=region,data=eusilcS_

HH,replace=T)
>
> # Aggregation of the covariates on region level
> eusilcP_HH_agg<-tbl_df((eusilcP_HH))%>%group_by((region

))%>%summarise(hy090n=mean(hy090n))%>%
+ ungroup()%>%mutate(Domain=fit_direct$Domain)
>
> # Merging the datasets
> data_frame<-left_join(eusilcP_HH_agg,fit_direct,by="

Domain")%>%mutate(var=SD^2)
>
> # Estimation of the FH-model
> fit_FH<-mseFH(formula=Direct ~ hy090n,vardir=var,data=

as.data.frame(data_frame))
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Model-based Methods

Using R-package sae: Fay-Herriot

> # Comparison of direct and FH
Domains SampSize Direct FH_est CV FH_CV

Burgenland 14 15781.61 16595.25 18.45 12.29
Lower Austria 71 20476.21 19912.64 6.45 5.14

Vienna 95 18996.19 20135.40 5.09 6.65
Carinthia 34 20345.62 20260.46 9.01 4.30

Styria 46 21184.01 20541.93 6.64 5.33
Upper Austria 67 21074.00 19702.94 5.36 5.84

Salzburg 26 18716.99 18908.88 7.41 5.82
Tyrol 32 18060.43 19729.34 10.38 4.01

Vorarlberg 15 18922.28 18342.81 10.69 6.22
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Model-based Methods

Case study: SAE with alternative data forms
Poverty estimation in Bangladesh using Wealth Index (WI) as proxy

Aim: Estimate average WI by Upazila (Level 3)

Survey Data Sources - DHS 2014

• n = 17K households
• Stratified 2-stage cluster design
• At least one cluster selected in 365/508 (72%) Upazilas
• Response: WI computed via PCA
• Average Upazila sample-size n̄i = 34
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Model-based Methods

Case study

Auxiliary data sources

• Remote sensing covariates
• Processed at 1km spatial resolution
• Aggregated at Upazila level
• Enhanced vegetation index (EVE)
• Elevation (ELEV)
• Accessibility to areas with more than 50K people (ACC)
• Night time lights (NL)

• Currently working with mobile phone covariates
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Model-based Methods

Case study - Direct and FH estimation

• Survey weighted direct estimates of WI i at upazila level
• Estimated variances of the direct:

• Ultimate cluster variance (UCV) estimator
• DEFT (One cluster in some Upazilas → UCV not applicable)
• Smoothing via GVF (WI

1,1/2,1/3
i , n

1,1/2
i )

• Ignoring PCA variability

• EBLUPs & Prasad-Rao MSEs under a FH model with RS covariates.
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Model-based Methods

Mapping the estimates

−1

0

1

2

WI

WI at upazila level
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Model-based Methods for Complex Statistics

3 – Small Area Estimation of non-linear indicators
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Model-based Methods for Complex Statistics

Typical results of poverty mapping
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Model-based Methods for Complex Statistics

Non-linear indicators

• Small area estimation methods mainly focus on estimating means and
proportions

• New developments in SAE methodologies focus on estimating
non-linear statistics e.g poverty/inequality indicators

• Methodology is general and covers linear and non-linear indicators

Data Requirements

• Estimation requires access to unit-level population covariates (e.g.
Census microdata)

• Data access is challenging
• Use of area-level models is possible
• Here we focus on unit-level models
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Model-based Methods for Complex Statistics

Recent methodologies

• The World Bank method (ELL)
(Elbers et al., 2003)

• The Empirical Best Predictor (EBP) method
(Molina and Rao, 2010)

• Methods based on M-Quantiles
(Tzavidis et al., 2010)
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Model-based Methods for Complex Statistics

Empirical Best Prediction (EBP)

yij = xTij β + ui + eij , j = 1, . . . , ni , i = 1, . . . ,D,

1 Use the sample data to estimate β̂, σ̂2
u, σ̂

2
e , ûi and γ̂i = σ̂2u

σ̂2u+
σ̂2e
ni

.

2 For l = 1, ..., L
• Compute E (yr |ys) under the assumption of normal errors
• Generate e∗ij ∼ N(0, σ̂2

e ) and u∗i ∼ N(0, σ̂2
u · (1− γ̂i )), simulate a

pseudo-population

yij
∗(l) = xTij β̂ + ûi + u∗i + e∗ij

• Calculate the measures of interest, e.g. poverty indicator, θ(l)i .

3 Obtain θ̂EBPi = 1/L
L∑

l=1
θ̂
(l)
i for each area i .
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Model-based Methods for Complex Statistics

Parametric bootstrap: MSE estimation

• Fit the random effects model to the original sample
• Generate u∗i ∼ N(0, σ̂2

u), e∗ij ∼ N(0, σ̂2
e )

• Construct B bootstrap populations

y∗ij = xTij β̂ + u∗i + e∗ij

• For each b population compute the population value θ∗bi
• From each bootstrap population select a bootstrap sample
• Implement the EBP with the bootstrap sample, get θ̂∗bi

M̂SE (θ̂i ) = B−1
B∑

b=1

(θ̂∗bi − θ∗bi )2
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Model-based Methods for Complex Statistics

Using R-package emdi: EBP method

• The R-package emdi is an alternative to the sae package
• sae currently includes more methods
• emdi, user friendly, more emphasis on presentation of the results
• Estimation for linear and non-linear indicators using unit-level models
• Includes data-driven transformations
• Currently being extended to include area-level models

• The R package emdi includes two synthetic data sets

- eusilcS_HH: sample data from Austrian regions about household
income and demographics

- eusilcP_HH: population micro-data for the Austrian regions

- Both data sets contain the same covariates
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Model-based Methods for Complex Statistics

Using R-package emdi: EBP method
Implemented in the R package emdi via function ebp()

# EBP estimation function
ebp_au <- ebp(fixed = eqIncome ~ gender + eqsize +

py010n + py050n + py090n +
py100n + py110n + py120n +
py130n + hy040n + hy050n +
hy070n + hy090n + hy145n,

pop_data = eusilcP_HH,
pop_domains = "region",
smp_data = eusilcS_HH,
smp_domains = "region",
pov_line = 0.6*median(eusilcS_HH$eqIncome

),
transformation = "no",
L=50,
MSE = T,
B = 50)
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Model-based Methods for Complex Statistics

Using R-package emdi: EBP method - Summary output

# Summary for the EBP method
> summary(ebp_au)

Out-of-sample domains: 0
In-sample domains: 9

Sample sizes:
Units in sample: 503
Units in population: 25000

Min. 1st Qu. Median Mean 3rd Qu. Max.
Sample_domains 16 26 43 55.9 94 101
Pop_domains 799 1671 1889 2778 4071 5857
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Model-based Methods for Complex Statistics

Using R-package emdi: EBP method - Summary output

Explanatory measures:
Marginal_R2 Conditional_R2
0.5198029 0.5198029

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 2.17646 12.5925 0.8551573 4.0933e-21
Random_effect 0.64311 2.6048 0.8870226 1.8589e-01

ICC: 2.610126e-08

Small Area Estimation 56 / 82 NCRM Training - University of Bristol 56 / 82

Reference: Kreutzmann et al. (2019).



Model-based Methods for Complex Statistics

Motivating alternative methods

• EBP relies on Gaussian assumptions :

X ui
iid∼ N(0, σ2

u), the random area-specific effects

X eij
iid∼ N(0, σ2

e )

Model Checking (Residual diagnostics)

• Q-Q plots of residuals at different levels

• Influence diagnostics

• Plot standardised residuals vs fitted values - Heteroscedasticity
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Model-based Methods for Complex Statistics

Graphical investigation of normality
Q-Q plots can help to assess the normality assumptions and it belongs to
one of the plots that are automatically provided when applying the function
plot to an emdi object

# Residual diagnostics
> plot(ebp_au)
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Model-based Methods for Complex Statistics

Model adaptations

• Use an EBP formulation under an alternative distribution (Graf et al.,
2015) - Model under generalised Beta distribution of the second kind

• Use robust methods as an alternative to transformations (Chambers
and Tzavidis, 2006; Ghosh, 2008; Sinha and Rao, 2009; Chambers
et al., 2014; Schmid et al., 2016)

• Use non-parametric models (Opsomer et al., 2008; Ugarte et al.,
2009)

• Elaborate the random effects structure e.g. include spatial structures
(Pratesi and Salvati, 2008; Schmid et al., 2016)

• Use of transformations
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Model-based Methods for Complex Statistics

Why transformations might help?

• Attempt to satisfy the model assumptions:

- Normality: Reducing skewness and controlling kurtosis

- Homoscedasticity: Variance-stabilization

- Linearity: linearizing relation between variables
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Model-based Methods for Complex Statistics

Some choices of transformations

• Shifted transformations
• Log-shift

• Power transformations
- Box-Cox
- Exponential
- Sign power
- Modulus
- Dual power
- Convex-to-concave

• Multi-parameter transformations
- Johnson
- Sinh-arcsinh
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Model-based Methods for Complex Statistics

Scaled transformations

Scaled Log-Shift Transformation (λ)

Tλ(yij) = α log(yij + λ),

Scaled Box-Cox Transformation (λ)

Tλ(yij) =

{
(yij+s)λ−1
αλ−1λ

, λ 6= 0
α log(yij + s), λ = 0

,

Scaled Dual Power Transformation (λ)

Tλ(yij) =

{
2
α
(yij+s)λ−(yij+s)−λ

2λ if λ > 0;

α log(yij + s) if λ = 0.

with α chosen in such that the Jacobian of the transformation is 1
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Model-based Methods for Complex Statistics

Estimation methods of (λ) for linear mixed models

- Skewness minimization

- Divergence minimization

- ML/REML
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Model-based Methods for Complex Statistics

Estimation algorithm (λ)

REML Algorithm for the EBP Method:

1 Choose a transformation type

2 Define a parameter interval for λ

3 Set λ to a value inside the interval

4 Maximize the residual log-likelihood function conditional on fixed λ

5 Repeat 3 and 4 until maximum until λ̂ is found

6 Apply the EBP method using λ̂
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Model-based Methods for Complex Statistics

Parametric bootstrap for MSE estimation

1 For b = 1, ...,B
• Using the already estimated β̂, σ̂2

u , σ̂
2
e , λ̂ from the transformed data

T (yij) = ỹij , simulate a bootstrap superpopulation
ỹ∗
ij
(b) = xTij β̂ + u∗i + e∗ij

• Transform ỹ∗
ij
(b) to original scale resulting in yij

∗(b)

• For each b population compute the population value θ∗bi
• Extract the bootstrap sample in yij

∗(b) and use the EBP method
• Estimate λ with the bootstrap sample
• Obtain θ̂∗bi

2 M̂SE (θ̂i ) = B−1∑B
b=1(θ̂∗bi − θ∗bi )2
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Model-based Methods for Complex Statistics

Using emdi

Currently function ebp() includes a logarithmic or Box-Cox transformation

# EBP estimation function under a Box-Cox
transformation

ebp_au <- ebp(fixed = eqIncome ~ gender + eqsize +
py010n + py050n + py090n +
py100n + py110n + py120n +
py130n + hy040n + hy050n +
hy070n + hy090n + hy145n,

pop_data = eusilcP_HH,
pop_domains = "region",
smp_data = eusilcS_HH,
smp_domains = "region",
pov_line = 0.6*median(eusilcS_HH$eqIncome

),transformation = "box.cox",L=50,
MSE = T,B = 50)
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Model-based Methods for Complex Statistics

Using emdi - Summary output

# Summary for the EBP method
> summary(ebp_au)

Transformation:
Transformation Method Optimal_lambda Shift_parameter

box.cox reml 0.4317972 0

Explanatory measures:
Marginal_R2 Conditional_R2
0.4543301 0.4543301

Residual diagnostics:
Skewness Kurtosis Shapiro_W Shapiro_p

Error 0.76051 6.3646 0.95643 4.9497e-11
Random_effect 0.58501 2.5533 0.95227 7.1501e-01
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Model-based Methods for Complex Statistics

Finding λ̂

Graphical representation of the optimal λ̂ is made using the function plot
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Model-based Methods for Complex Statistics

Model and Design-based evaluation using Monte-Carlo simulation

• Model-based evaluation

- Uses synthetic data generated under a model

- Sampling is performed repeatedly from the population generated in
each Monte-Carlo round

- Useful for evaluating performance and sensitivity of new methods under
different assumptions

• Design-based evaluation

- Uses frame data (e.g. census data) or synthetic data (not generated
under a model) that preserve the survey characteristics

- Sampling is performed repeatedly by keeping the population fixed

- Useful for comparing competing methods in more realistic settings
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Model-based Methods for Complex Statistics

Quality measures - R simulations

Root mean square error:

RMSEi =

√√√√ 1
R

R∑
r=1

(
θ̂i,r − θi,r

)2

Relative bias [%]:

RBi =
1
R

R∑
r=1

θ̂i,r − θi,r
θk,r

· 100

Absolute bias:

Biasi =
1
R

R∑
r=1

θ̂i,r − θi,r
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Model-based Methods for Complex Statistics

Model-based evaluation

Population data: is generated for m = 50 areas with N = 200 via

yij = 4500− 400xij + ui + eij

• Covariates xij ∼ N(µi , 32) with µi ∼ U(−3, 3)

• Random effects ui ∼ N(0, 5002)

• Unbalanced design leading to a sample size of n = 921 (min = 8,
mean = 18.4, max = 29)

• 100 Monte Carlo replicates with L=50 bootstraps

Scenarios: Three different income distribution are investigated:
eij ∼ Pareto(2.5, 100)

eij ∼ GB2(3, 700, 1, 0.8)
eij ∼ Gumbel(1, 1000)
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Model-based Methods for Complex Statistics

Estimated transformation parameters
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Model-based Methods for Complex Statistics

Performance under the Pareto scenario using REML
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Model-based Methods for Complex Statistics

Design-based evaluation: State of Mexico (EDOMEX)

• Target geography: State of Mexico is made up of 125 administrative
divisions
• Survey: 58 are in-sample and 67 out-of-sample
• Census: From the 219514 households, there are 2748 in the sample
• Sample sizes:

Min. Q1. Median Mean Q3 Max.

Survey 3 17 21 47 42 527
Census 650 923 1161 1756 1447 13580

Outcome: Two income variables are available in the survey.
The target variable is available only on the survey. Earned per capita
income from work is also available on the Census micro data
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Model-based Methods for Complex Statistics

Design-based evaluation: Setup

• Design-based simulation with 500 MC-replications repeatedly drawn
from EDOMEX Census

• Unbalanced design leading to a sample size of n = 2195 (min = 8,
mean = 17.6, max = 50)

• Sampling from each municipality
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Model-based Methods for Complex Statistics

Transformation parameters - Estimation
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Model-based Methods for Complex Statistics

Residual diagnostics
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Model-based Methods for Complex Statistics

Model diagnostics

Transformation No Log Log-Shift Box-Cox Dual

R2 0.30 0.40 0.52 0.48 0.48
ICC 0.004 0.046 0.032 0.029 0.027
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Model-based Methods for Complex Statistics

Estimated HCR under alternative transformations
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Model-based Methods for Complex Statistics

Some further topics

• Methods for discrete outcomes (e.g. binary and count)
• Use of GLMMs

• Outlier robust methods

• Model selection & testing

• Non-parametric models

• Models with spatial structure in the random effects

• Benchmarking methods

• SAE methods with linked data

• SAE methods with interval-censored response data
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