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1. Models for Repeated Measures
Growth Curve Models
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Introduction
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Longitudinal studies

I A longitudinal study tracks the same group of subjects over
time

I Subjects may be individuals, organisations etc.

I Classic longitudinal designs are prospective
I A cohort study samples a group who experience an event at

the same time (usually born in a given time period)
I A panel study samples a cross-section of the population

I But longitudinal data may also be collected retrospectively,
e.g. asking people to recall timing of events (births,
marriages)
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Causal inference using longitudinal data

I Cross-sectional data cannot be used for causal inference
(unless from a randomised experiment). Longitudinal data can
greatly reduce bias in estimating causal effects

I E.g. how can we interpret cross-sectional associations between
exercise (E), diet (D) and weight (W)?

I E and D influence W, but high W may influence (encourage or
discourage) changes in E and D

I Repeated measurements taken on the same individuals can
help to disentangle complex interrelationships between all
three variables

5



Age vs cohort effects

I How should we interpret a positive cross-sectional association
between age and voting in elections?

I Perhaps people become more socially responsible as they get
older (an age effect)

I Or perhaps people who grew up during periods of national
instability take a greater interest in politics (a cohort effect)

I Longitudinal data can be used to distinguish age and cohort
effects

I Does a person’s chance of voting change with age? Is a
20-year old born in 1960 more likely to vote than a 20-year old
born in 1970?
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Types of longitudinal data

I Repeated measures
I The same variable is measured on several occasions, e.g.

height, test scores, attitudes
I Collected prospectively

I Event history (duration) data
I The duration until some event occurs (measured from time of

becoming ’at risk’ of the event), e.g. duration from marriage
to divorce

I Collected retrospectively or prospectively

This course focuses on the analysis of repeated measured data.
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Example research questions and methods of analysis

I How does cognitive development vary between children
(GCM)?

I Is there a gender difference in the rate of cognitive
development (GCM)?

I What is the effect of income on subsequent mental health
(adjusting for prior mental health) (DM)?

I What is the effect of a change in income on mental health
(adjusting for mental health before income change) (DM)?

GCM - Growth curve model
DM - Dynamic model
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Repeated Measures Data;
Introduction to Growth Curve Models
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Example: Reading development

I Data from children of female respondents to the U.S. National
Longitudinal Survey of Youth ∗

I Reading scores for 221 children on four occasions (only
complete cases considered)

I Occasions spaced two years apart (1986, 1988, 1990 and
1992); children aged 6-8 in 1986

I Other variables: antisocial behaviour (also repeated
measures), gender, amount of cognitive support at home

Interested in variation between children in their reading
development (or reading trajectories)

∗See http://www.unc.edu/∼curran/srcd-docs/srcdmeth.pdf
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Reading data in wide form

Repeated measures data often come in the form of 1 record per
individual, with different measures stored as separate variables.

child male homecog read1 read2 read3 read4

1 1 9 2.1 2.9 4.5 4.5

2 0 9 2.3 4.5 4.2 4.6
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Reading data in long form

Most methods of longitudinal data analysis require data to be
restructured so there is 1 record per measurement occasion.

child year male homecog read

1 1 1 9 2.1
1 2 1 9 2.9
1 3 1 9 4.5
1 4 1 9 4.5

2 1 0 9 2.3
2 2 0 9 4.5
2 3 0 9 4.2
2 4 0 9 4.6

It is straightforward to convert data from wide to long format.
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Questions about reading development

I What is the nature of reading development with age? Linear
or nonlinear?

I How much do children vary in their initial reading score and in
the rate of development?

I Does the initial score and rate of change depend on
child/family characteristics, e.g. amount of cognitive support
at home?
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Summary statistics for reading by year

Year
1 2 3 4

Mean 2.52 4.04 5.02 5.80
SD 0.88 1.00 1.10 1.22

I Mean reading score increases by year

I But likely to be a large amount of variation between children in
reading ability and speed of progress
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Observed reading trajectories for 10 children

I Trajectories fairly monotonic (increasing with age), but nonlinear

I Individual variation in level (intercept) and rate of change (slope)15



Repeated measures data: Notation

yti is the response at occasion t (t = 1, . . .T ) for individual i
(i = 1, . . . , n).

Suppose that zti is the timing of occasion t for individual i . For
simplicity, we assume zti = t but in many applications time ≡ age,
and individuals may vary in age at occasion t.

I Occasions need not be equally spaced

I Individuals may have missing data because of attrition or by
design

Can view data as having a 2-level hierarchical structure: responses
(level 1) within individuals (level 2).
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Basic linear growth model

We begin with a model that allows for individual variation in the
level of y for individuals.

Ignoring covariates for now, a simple linear growth curve model is:

yti = β0i + β1t + eti
β0i = β0 + u0i (individual variation in level of y)

where u0i is an individual-specific residual (or random effect)
representing unmeasured individual characteristics that are fixed
over time and eti are occasion-level residuals.
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Basic linear growth model: Assumptions and estimation

I Usually assume u0i ∼ N(0, σ2u0) and eti ∼ N(0, σ2e ) are
normally distributed.

I Assume cov(eti , esi ) = 0, i.e. correlation between an
individual’s y -values over time is explained by u0i .

I The model can be viewed as a ’random intercept’ multilevel
model, where u0i allows the level of y (or intercept) to vary
across individuals.

I The growth rate (coefficient of t, β1) is fixed across
individuals, which will usually be an unrealistic assumption.
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Application of random intercept model: Reading

Results from MLwiN (Iterative Generalised Least Squares)

Parameter Est (SE)

Intercept (β0) 2.719 (0.068)
Slope of t (β1) 1.084 (0.020)

Level 2 (between-child) variance (σ2u0) 0.729 (0.080)
Level 1 (within-child) variance (σ2e ) 0.422 (0.023)

Deviance 2202.68

After accounting for a common time effect, 0.73/(0.73 + 0.42) = 63% of

the variation in yti is due to differences between individuals
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Linear growth model with random slopes

A random intercept model will rarely be realistic for repeated
measures data, so we now move to a random slope model.

yti = β0i + β1i t + eti
β0i = β0 + u0i (individual variation in level of y)
β1i = β1 + u1i (individual variation in growth rate)

(
u0i
u1i

)
∼ N

[(
0
0

)
,

(
σ2u0
σu01 σ2u1

)]
eti ∼ N(0, σ2e )
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Interpretation

I yti = β0 + β1t is the average trajectory (but may not
represent trajectory of any individual)

I u0i is the individual departure about the intercept of this line

I u1i is the individual departure about the slope of this line

I σ2u0 is the between-individual variance in the mean of y at
t = 0 (Code t so that 0 is in observed range, e.g. 1st occasion
or mid-point.)

I σ2u1 is the between-individual variance in the growth rate

I σu01 is the covariance between the intercepts and slopes of
the individual linear trajectories
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Application of random slope model: Reading

Results from MLwiN (IGLS)

Parameter Est (SE)
Intercept (β0) 2.719 (0.057)
Slope of t (β1) 1.084 (0.024)

Level 2 (between-child)
Variance of intercepts (σ2

u0) 0.516 (0.071)
Intercept-slope covariance (σu01) 0.029 (0.022)
Variance in slopes of t (σ2

u1) 0.069 (0.013)
Level 1 (within-child)

Variance (σ2
e ) 0.306 (0.021)

Deviance 2119.05

t is recoded 0, 1, 2, 3 (i.e. centred at t = 1) so σ̂2
u0 = 0.52 is the

between-child variance at the first occasion
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Testing for between-individual variation in growth rate

Compare random intercept and random slope model using a
likelihood ratio test.

Null hypothesis is H0 : σ2u1 = σu01 = 0

Compare change in deviance (twice the difference in the
log-likelihoods between the 2 models) with a chi-squared
distribution on 2 d.f.

In reading example, LR = 2202.68− 2119.05 = 83.6 so strong
evidence against the null =⇒ the random slope model is
preferred.
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Interpretation of random slope model: Reading

I readti = 2.72 + 1.08t is the equation of the fitted average line,
but children vary in their intercepts and slopes about this line

I Between-child variance in the mean reading score at 1st
occasion (age 6-8) is 0.52

I Between-child variance in slope of time (growth rate) is 0.069

I Covariance between child intercepts and slopes is 0.029
(translates to correlation of 0.029/(

√
0.52× 0.069) = 0.15

I Within-child variance (between occasions) is 0.31
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Interpretation of intercept-slope covariance

σu01 is the covariance between the intercepts and slopes of the
individual linear trajectories

E.g. σu01 > 0 implies individuals with u0i > 0 (above-average y at
t = 0) tend to have u1i > 0

If ’average’ slope β1 > 0 then u1i > 0 suggests a
steeper-than-average growth rate

If β1 < 0 then u1i > 0 suggests a flatter-than-average growth rate
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Predicted linear trajectories for first 10 children
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Predicted linear trajectories for all 221 children

Some suggestion that the variability in reading scores increases
with t (age).

27



Reading: Intercept vs slope residuals (û0i vs û1i)

Weak positive correlation: children with above-average scores at t = 0

(u0i > 0) tend also to progress more quickly (u1i > 0).
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Between-individual variance

Random slope for t implies that the between-individual variance
depends on t:

var(u0i + u1i t) = var(u0i ) + 2cov(u0i , u1i )t + var(u1i )t
2

= σ2u0 + 2σu01t + σ2u1t
2

i.e. a quadratic function of time with ’coefficients’ σ2u0, σu01 and
σ2u1.

For children’s reading, between-child variance estimated as

0.52 + 0.058t + 0.069t2

i.e. strictly increasing with age (as implied by ’fanning out’ pattern
in prediction lines)

29



Between-child variance in reading by time (age)

30



2. An Introduction to MCMC 
methods and Stat-JR 
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What will we cover in this first session? 

 

• What is Bayesian Statistics? (as opposed to classical or frequentist 
statistics) 

• What is MCMC estimation? 

• MCMC algorithms and Gibbs Sampling 

• MCMC diagnostics 

• MCMC Model comparisons 

• Stat-JR 
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WHAT IS BAYESIAN STATISTICS? 
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Why do we need to know about Bayesian statistics? 

 

• In the practicals in this workshop we will be using Stat-JR and 
primarily MCMC methods which are a family of estimation methods 
used for fitting realistically complex models. 

• MCMC methods are generally used on Bayesian models which have 
subtle differences to more standard (frequentist) models. 

• As most statistical courses are still taught using classical or 
frequentist methods we need to describe the differences before going 
on to consider MCMC methods. 
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Bayesian Inference 

 

In Bayesian inference there is a fundamental distinction between 

• Observable quantities x, i.e. the data 

• Unknown quantities θ 

θ can be statistical parameters, missing data,  latent variables… 

• Parameters are treated as random variables 

In the Bayesian framework we make probability statements 
about model parameters 

In the frequentist framework, parameters are fixed non-random 
quantities and the probability statements concern the data. 
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Prior distributions 

 

As with all statistical analyses we start by positing a model which 
specifies p(x| θ) 

This is the likelihood which relates all variables into a ‘full 
probability model’ 

However from a Bayesian point of view : 

•  is unknown so should have a probability distribution 
reflecting our uncertainty about it before seeing the data 

• Therefore we specify a prior distribution p(θ) 

 

 

 

 

 

 

36



Non-informative priors 

 

We often do not have any prior information, although true 
Bayesian’s would argue we always have some prior 
information! 

We would hope to have good agreement between the 
frequentist approach and the Bayesian approach with a non-
informative prior. 

Diffuse or flat priors are often better terms to use as no prior is 
strictly non-informative! 

For an example with an unknown mean, candidate priors are a 
Uniform distribution over a large range or a Normal 
distribution with a huge variance. 
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Posterior Distributions 

 

Also x is known so should be conditioned on and here we use Bayes theorem 
to obtain the conditional distribution for unobserved quantities given the 
data which is known as the posterior distribution. 

 

 

 

The prior distribution expresses our uncertainty about  before seeing the 
data. 

The posterior distribution expresses our uncertainty about  after seeing the 
data. 
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Point and Interval Estimation 

 

In Bayesian inference the outcome of interest for a parameter is 
its full posterior distribution however we may be interested in 
summaries of this distribution. 

A simple point estimate would be the mean of the posterior. 
(although the median and mode are alternatives.) 

Interval estimates are also easy to obtain from the posterior 
distribution and are given several names, for example credible 
intervals, Bayesian confidence intervals and Highest density 
regions (HDR). All of these refer to the same quantity. 
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MCMC METHODS  

40



How does one fit models in a Bayesian framework? 

 

Let us now consider a simple linear regression: 

 

 

 

With conjugate priors: 
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MCMC Methods 

 

Goal: To sample from joint posterior distribution: 

 

Problem: For complex models this involves multidimensional 
integration 

Solution: It may be possible to sample from conditional posterior 
distributions,  

 

 

It can be shown that after convergence such a sampling 
approach generates dependent samples from the joint 
posterior distribution. 
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Gibbs Sampling 

 

When we can sample directly from the conditional posterior 
distributions then such an algorithm is known as Gibbs 
Sampling. 

This proceeds as follows for the linear regression example: 

Firstly give all unknown parameters starting values, 

  

 

Next loop through the following steps: 
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Gibbs Sampling ctd. 

Sample from 

 

 

 

 

 

  

 

.)1( generate  to))1(),1(,|(

from then and )1( generate  to))0(),1(,|(

from then and )1( generate  to))0(),0(,|(

2

10

2

1

2

01

0

2

10







yp

yp

yp

These steps are then repeated with the generated 
values from this loop replacing the starting values. 
The chain of values produced by this procedure is 
known as a Markov chain, and it is hoped that this 
chain converges to its equilibrium distribution which 
is the joint posterior distribution. 
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Calculating the conditional distributions 

 

In order for the algorithm to work we need to sample from the 
conditional posterior distributions. 

If these distributions have standard forms then it is easy to draw 
random samples from them. 

Mathematically we write down the full posterior and assume all 
parameters are constants apart from the parameter of 
interest. 

We then try to match the resulting formulae to a standard 
distribution. 

The Stat-JR software gives the derivations!  
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Algorithm Summary 

 

Repeat the following three steps 

1. Generate β0 from its Normal conditional distribution. 

2. Generate β1 from its Normal conditional distribution. 

3. Generate 1/σ2 from its Gamma conditional distribution 

Convergence and burn-in 

Two questions that immediately spring to mind are: 

1. We start from arbitrary starting values so when can we 
safely say that our samples are from the correct 
distribution? 

2. After this point how long should we run the chain for and 
store values? 
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MCMC DIAGNOSTICS 
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Checking Convergence  

This is the researchers responsibility! 

Convergence is to a target distribution (the required posterior), 
not to a single value as in ML methods. 

Once convergence has been reached, samples should look like a 
random scatter about a stable mean value. 
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iteration
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    7.0

    7.5

    8.0

    8.5

    9.0

Convergence occurs here at around 100 
iterations. 
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How many iterations after convergence? 

 

After convergence, further iterations are needed to 
obtain samples for posterior inference. 

More iterations = more accurate posterior estimates. 

MCMC chains are dependent samples and so the 
dependence or autocorrelation in the chain will 
influence how many iterations we need. 

Accuracy of the posterior estimates can be assessed by 
the Monte Carlo standard error (MCSE) for each 
parameter. 
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MCMC diagnostics (Example from Stat-JR) 

 

 

 

 

 

 

 

  

 

We will describe each pane separately – Note MLwiN has similar six way plots! 
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Trace plot 

This graph plots the generated values of the parameter 
against the iteration number.  
When multiple chains are run as here each chain is a 
different colour. 
A crude test of mixing with 1 chain is the ‘blue finger’ 
test. 
Here the red chain was plotted last so as mixing 
improves the plot becomes redder.  
These chains don’t mix that well but could be worse! 
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Kernel Density plot 

 

 

 
 
 
This plot is like a smoothed histogram. 
 
Instead of counting the estimates into bins of particular widths like a 

histogram, the effect of each iteration is spread around the estimate via a 
Kernel function e.g. a normal distribution. 

This means that at each point we get the sum of the Kernel function parts for 
each iteration.  

The Kernel density plot has a smoothness parameter that can be modified. 
With multiple chains we hope each kernel plot is the same – here we see 

some variability due to short chain lengths. 
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Time series diagnostics 

 

 

 

Here we have the Auto correlation function (ACF) and partial autocorrelation 
function (PACF) plots. 

The ACF measures how correlated the values in the chain are with their close 
neighbours. The lag is the distance between the two chains to be compared. 

An independent chain will have approximately zero autocorrelation at each lag. 

A Markov chain should have a power relationship in the lags i.e. if ACF(1) =  
then ACF(2) = 2 etc. This is known as an AR(1) process. 

The PACF measures discrepancies from such a process and so should normally 
have values 0 after lag 1. 
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Monte Carlo Standard Error 

 

 

 

 

The Monte Carlo Standard Error (MCSE) is an indication of how much error is 
in the estimate due to the fact that MCMC is used. 

As the number of iterations increases the MCSE0. 

For an independent sampler it equals the SD/n. 

However it is adjusted due to the autocorrelation in the chain. 

The graph above gives estimates for the MCSE for longer runs. 
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Brooks Gelman Rubin diagnostic 

A multiple chain diagnostic that looks at how well the 
chains converge to the same distribution. 

The green and blue lines show the between and within 
chain variability and the ratio shown in red is the 
diagnostic which should converge to 1.0. 
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Summary Statistics and Accuracy Diagnostics (available 
from Summary Statistics template) 

Statistics given are: 

• Mean and SD – from the chain. 

• Median – by sorting the chain and finding the middle value. 

• Other quantiles for 90% and 95% CIs as well as minimum, maximum and 
IQR. Thus one can obtain a non-symmetric interval. 

Accuracy diagnostics: 

• Brooks-Draper works on quoting the mean to n significant figures. It’s 
formulae uses the estimate, it’s s.d. and the ACF and it can often give very 
small or very large values!  

• The ESS will be discussed next. 
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Effective Sample Size 

 

This quantity gives an estimate of the equivalent number of 
independent iterations that the chain represents. 

This is related to the ACF and the MCSE. 

Its formula is:  

 

In Stat-JR it is given in the ModelResults object as well as summary 
statistics and for the parameter above is 420 despite running for 3 
chains of 2,000 iterations each!  
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Inference using posterior samples from MCMC runs 

 

A powerful feature of MCMC and the Bayesian approach is that 
all inference is based on the joint posterior distribution. 

We can therefore address a wide range of substantive questions 
by appropriate summaries of the posterior. 

Typically report either the mean or median of the posterior 
samples for each parameter of interest as a point estimate 

2.5% and 97.5% percentiles of the posterior sample for each 
parameter give a 95% posterior credible interval (interval 
within which the parameter lies with probability 0.95) 
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Derived Quantities 

 

Once we have a sample from the posterior we can answer lots of 
questions simply by investigating this sample. 

Examples: 

What is the probability that θ>0?  

What is the probability that θ1> θ2? 

What is a 95% interval for θ1/(θ1+ θ2)? 
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MODEL COMPARISON 
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Model Comparison in MCMC 

 

In frequentist statistics there are many options including: 

• Likelihood ratio (deviance) tests 

• Wald Tests 

• Information Criterion – e.g. AIC/BIC 

Here we look at a criterion that can be used with MCMC and 
which for a linear regression model is equivalent to the AIC – 
the Deviance information criterion (DIC). 

 

 

 

 

 

 

  

61



DIC 

 
A natural way to compare models is to use a criterion based on a trade-off 

between the fit of the data to the model and the corresponding 
complexity of the model.  

DIC does this in a Bayesian way. 
DIC = ‘goodness of fit’ + ‘complexity’. 
Fit is measured by deviance 
 
Complexity is measured by an estimate of the ‘effective number of 

parameters’ defined as 
 
 
 
i.e. Posterior mean deviance minus the deviance evaluated at the posterior 

mean of the parameters. 
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DIC (continued) 

 

The DIC is then defined analagously to AIC as  

 

 

 

 

Models with smaller DIC are better supported by the data. 

• DIC is available in Stat-JR in the ModelResults object. 

• DIC can be monitored in other packages such as MLwiN under 
the Model/MCMC menu and WinBUGS from (Inference/DIC 
menu). 
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Some guidance on DIC 

 

• any decrease in DIC suggests a better model 

•  But stochastic nature of MCMC; so, with small difference in DIC you 

should confirm if this is a real difference by checking the results with 

different seeds and/or starting values. 

• More experience with AIC, and common rules of thumb……… 
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SUMMARY & COMPARISON WITH 
FREQUENTIST APPROACH 
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Markov chain Monte Carlo (MCMC) 

 

• MCMC methods are Bayesian estimation techniques 
which can be used to estimate multilevel models 

• MCMC works by drawing a random sample of values 
for each parameter from its probability distribution 

• The mean and standard deviation of each random 
sample gives the point estimate and standard error 
for that parameter 
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Estimating a model using MCMC estimation 

• We start by specifying the model and our prior knowledge for 
each parameter  (nearly always no knowledge!) 

• Next we specify initial values for the model parameters 

• We then run the MCMC algorithm and obtain the parameter 
chains 

• We discard the initial burn-in iterations when the chains are 
settling down (converging to their posterior distributions) 

• Summary statistics for the remaining monitoring iterations 
are then calculated: 

– Point estimates and standard errors are given by the 
means and standard deviations of the chains 
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Frequentist (IGLS) vs. MCMC (1) 

 

 

 

 

 

 

 

•  Note that in practice we often do not incorporate prior 
information 

• We want to protect our inferences from being influenced by 
our prior beliefs 

– True Bayesians have a very different take 

 

IGLS MCMC 

Fast Slow 

Uses MQL/PQL approximations to fit 
discrete response models, which can 
sometimes produce biased estimates 

Produces unbiased estimates 

Cannot incorporate prior information Can incorporate prior information 
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IGLS vs. MCMC (2) 

 

 

 

 

 

 

 

  

 

IGLS MCMC 

Confidence intervals based on 
normality are unreasonable for 
variance parameters 

Normality not assumed 
 

Hard to calculate confidence intervals 
for functions of parameters 

Easy to calculate confidence intervals 
for arbitrarily complex functions of 
parameters 

Difficult to extend to new models Easy to extend 

Model convergence is judged for you You have to judge model convergence 
for yourself 
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IGLS vs. MCMC (3) 

 

 

 

 

 

 

 

  

 

IGLS algorithm converges 
deterministically to a point 

Convergence is therefore 
judge for you 

MCMC algorithm converges 
stochastically to the 
equilibrium probability 
distribution 

 

You have to judge 
convergence for yourself 

70



Priors 

 

• Our prior knowledge for each parameter is 
summarised by a probability distribution referred to 
as the prior distribution 

– Typically, we specify that we have no prior 
knowledge as we like the ‘data to speak for it self’ 

– We therefore specify vague, diffuse or 
uninformative priors 
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MCMC samplers 

 

• At the tth iteration we want to sample from the posterior 
distribution of each parameter in turn 

– If we can write down an analytical expression for the 
posterior distribution then we can use Gibbs sampling 

• Computationally efficient algorithm 

• Continuous response models 

– If we can’t write down an analytical expression for the 
posterior then we use Metropolis-Hastings sampling   
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Deviance information criterion (DIC) for model 
comparison 

 

• DIC can be viewed as an AIC or BIC statistic for 
MCMC 

• DIC balances goodness of fit and model complexity 
(i.e. deviance and number of parameters) 

• Want to maximise fit and minimise complexity 

– Lower deviance and fewer parameters 

• So “better” models have smaller DIC 

• Note that the DIC does not have universal approval! 
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STAT-JR 
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Stat-JR 

• Stat-JR is a new statistical software package named after our 
former colleague Jon Rasbash 

• It is based around the concept of templates that perform a 
specific statistical task and can be slotted together to form a 
statistical software package. 

• The big vision was an all-singing all-dancing system where 
expert users could add functionality easily and which 
interoperates with other software. Stat-JR has an 
underpinning algebra system which can be used to create 
model fitting templates. 
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STAT-JR component based approach 

Below is an early diagram of how we envisioned the system. Here you will see 
boxes representing components some of which are built into the STAT-JR 
system. The system is written in Python with currently a VB.net algebra 
processing system. A team of coders work together on the system. 
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Templates 

Backbone of Stat-JR.  

Consist of a set of code sections for advanced users to write. A 
bit like R packages. 

For a model template it consists of at least: 

• an inputs method which specifies inputs and types 

• A model method that creates (BUGS like) model code for the 
algebra system 

• An (optional) latex method can be used for outputting LaTeX 
code for the model. 

Other optional functions required for more complex templates 
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Regression 1 Example 

from EStat.Templating import * 

 

class Regression1(Template): 

    'A model template for fitting 1 level Normal multiple 
regression model in eStat only.‘ 

 tags = [ 'Model', '1-Level', 'eStat', 'Normal' ] 

 engines = ['eStat'] 

 inputs = ''' 

y = DataVector('Response: ') 

x = DataMatrix('Explanatory variables: ', allow_cat=True, 
help= 'predictor variables') 

beta = ParamVector(parents=[x], as_scalar=True) 

tau = ParamScalar() 

sigma = ParamScalar(modelled = False) 

sigma2 = ParamScalar(modelled = False) 

deviance = ParamScalar(modelled = False) 

''' 

 model = ''' 
model{ 
    for (i in 1:length(${y})) { 
        ${y}[i] ~ dnorm(mu[i], tau) 
        mu[i] <- ${mmult(x, 'beta', 'i')} 
    } 
     
    # Priors 
    % for i in range(0, x.ncols()): 
    beta${i} ~ dflat() 
    % endfor 
    tau ~ dgamma(0.001000, 0.001000) 
    sigma2 <- 1 / tau 
    sigma <- 1 / sqrt(tau) 
} 
''' 
       latex = r''' 
\begin{aligned} 
 \mbox{${y}}_i & \sim \mbox{N}(\mu_i, \sigma^2) \\  
\mu_i & = 
  ${mmulttex(x, r'\beta', 'i')} \\  
%for i in range(0, len(x)): 
\beta_${i} & \propto 1 \\  
%endfor 
\tau & \sim \Gamma (0.001,0.001) \\  
\sigma^2 & = 1 / \tau 
\end{aligned}  
''' 
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An example of STAT-JR – setting up a model 
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An example of STAT-JR – setting up a model 
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Equations for model and model code 

All objects created available from one pull down and can be popped out to 
separate tabs in browser. 
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Equations for model and model code 

• Note: Equations use MATHJAX and so underlying LaTeX can be copied and 
paste. The model code is based around the WinBUGS language with some 
variation.  
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Model code in detail 

model{  
    for (i in 1:length(normexam)) {  
        normexam[i] ~ dnorm(mu[i], tau)  
        mu[i] <- cons[i] * beta0 + standlrt[i] * beta1 
 }  
# Priors  
    beta0 ~ dflat()  
    beta1 ~ dflat()  
    tau ~ dgamma(0.001000, 0.001000)  
    sigma2 <- 1 / tau  
    sigma <- 1/sqrt(tau) 
} 
 

For this template the code is, aside from the length function, standard 
WinBUGS model code. 
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Algebra system steps 
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Algebra system steps 
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Algebra system steps 

Here the first line is what is returned by the algebra 
system – which works solely on the model code. 
The second line is what can be calculated  when values 
are added for constants and data etc. 
System then constructs C code and fits model 
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Output from the E-STAT engine 

Estimates and the DIC diagnostic can be viewed for the model fitted. 
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Output from the E-STAT engine 

E-STAT offers multiple chains 
so that we can use multiple 
chain diagnostics to aid 
convergence checking. 
 
Otherwise the graphs are 
borrowed from the MLwiN 6-
way plotting. 
 
Graphics are in svg format so 
scale nicely. 
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INTEROPERABILITY 
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Interoperability with MLwiN 

MLwiN can be 
chosen as an 
alternative 
estimation engine. 
Here macro files to 
be run in MLwiN are 
constructed and the 
output from MLwiN 
is translated into a 
ModelResults 
object. 
Currently we are 
unable to get 
windows back from 
MLwiN into Stat-JR 
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Other templates - XYplot 

There are also 
templates for 
plotting.  
 
For example here is 
a plot using the 
Xyplot template. 
 
Shown is the plot 
whilst the Python 
command script is 
also available. 
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Different forms of STAT-JR and E-books 

• TREE (Template Reading and Execution Environment)  - the 
format we have demonstrated up to now. Allows user to 
investigate 1 template and 1 dataset. A dataset can be output 
from 1 template and then used by the next.  

• Cmdtest – this format involves the use of a Python script and 
allows the template to be called from within a script. Helpful 
for our test suite and potentially for tasks like simulations. We 
have code to run Stat-JR from Stata and R using this interface. 

• DEEP (Ebooktest) – mixing up templates with textboxes to 
make executable books – this is covered later. 

• Note Stat-JR currently runs on Windows but should soon be 
platform independent. 
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Stat-JR writes 
commands, etc., 

to perform 
requested 
function 

Template 

Dataset 

Stat-JR 
prompts user 

for input Function 
performed 

(If applicable) 
external software 
opened, run, then 

closed, with 
results returned 

to Stat-JR. E.g… 

Results of 
function 

produced 

(If applicable) results outputted as dataset to be fed 
back in… 

myModel<- glm(normexam~ 

Summary(myModel) 

plot(myModel,1) 
Select Open Worksheet 
Select datafile.dta 
Select Equations  from Fi  

Equations Macros Scripts Point & click 
instructions 

Results 
Model: 
DIC: 9766.506 
Parameters: 
Beta1: 0.594 

Charts Results 
tables 

93



3. Further Growth Curve Models
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Allowing for nonlinear growth

We can allow for nonlinear growth, e.g. a quadratic polynomial

yti = β0i + β1i t + β2i t
2 + eti

β0i = β0 + u0i
β1i = β1 + u1i
β2i = β2 + u2i

where the three individual-level random effects (u0i , u1i , u2i ) follow
a trivariate normal distribution.

t and t2 treated as explanatory variables in multilevel model for y .
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Maximum order of polynomial

The order of polynomial that can be fitted depends on the number
of occasions T .

For T observations can fit up to a T − 1 order polynomial, e.g.
cubic for T = 4.

But for T = 4 the covariance matrix for y has 10 parameters: 4
variances and 6 covariances. Fitting cubic leads to a 4× 4
covariance matrix at individual level, i.e. 10 parameters. So cannot
also estimate an occasion-level variance.
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Reading: Quadratic growth with fixed t2 effect

We begin by adding t2 to the ’fixed’ part of the model only (i.e. as
an explanatory variable with fixed coefficient).

IGLS MCMC
Parameter Est (SE) Mean (SD)
Intercept (β0) 2.534 (0.060) 2.529 (0.060)
t (β1) 1.641 (0.055) 1.646 (0.058)
t2 (β2) −0.186 (0.016) −0.187 (0.017)

Level 2 (between-child)
Intercept variance (σ2

u0) 0.564 (0.070) 0.586 (0.075)
Intercept-t covariance (σu01) 0.008 (0.022) 0.007 (0.023)
t variance (σ2

u1) 0.083 (0.013) 0.087 (0.013)
Level 1 (within-child)

Variance (σ2
e ) 0.238 (0.016) 0.239 (0.016)

Deviance = 2006.4 DIC = 1576.3
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Does the addition of t2 improve the model?

I The coefficient of t2 is −0.187 with a standard error of 0.017
which is highly significant

I The change in deviance is 2119 − 2006 = 113 which far
exceeds the critical value of 3.84 for χ2

1;0.05

I The DIC decreases from 1766 to 1576, a difference of 190

So we conclude that the addition of the quadratic in t improves
model fit. We now allow the coefficient of t2 to vary randomly
between children.

For all following analyses we present only MCMC results (see
Practicals for details of number of chains, burn-in, and number of
iterations).
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Reading: Quadratic growth with random t2 effect

We next allow the coefficient of t2 to vary randomly between
children. The coefficient of t2 becomes β2i = β2 + u2i .

3 new terms are added to the level 2 random part of the model:

I Covariance between intercepts and coefficients of t2,
cov(u0i , u2i ) = σu02

I Covariance between coefficients of t and coefficients of t2,
cov(u1i , u2i ) = σu12

I Variance of coefficients of t2, var(u2i ) = σ2u2

The DIC decreases from 1576 to 1492, so conclude random
coefficient for t2 is necessary to better capture between-individual
variation in trajectories.

99



Predicted quadratic trajectories for first 10 children
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Adding covariates

Covariates can be added to a growth model, and these can be
individual-level (fixed over time) or time-varying.

Often interested in how trajectories differ between groups, e.g.:

I Does level of reading score depend on amount of cognitive
support at home (xi )?

I Test by adding xi as a covariate to growth model
I Does xi explain variation in intercept (σ2

u0)?

I Does reading progress depend of cognitive support?
I Test by adding xi plus its interaction with time, xi t, to model
I Does xi t explain variation in progress (σ2

u1)?
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Reading: Effects of cognitive support on reading level

Results from MCMC estimation (fixed part coefficients only):

Parameter Mean (SD)
Intercept (β0) 2.049 (0.204)
t (β1) 1.645 (0.060)
t2 (β2) −0.186 (0.017)
homecog (β3) 0.053 (0.022)

I A 1-unit increase in homecog is associated with a 0.053 point
increase in reading score

I But little change in between-individual intercept variances (see

Practical)
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Reading: Effects of cognitive support on reading progress

Does the effect of homecog depend on the child’s age? Add an
interaction between t and homecog.

Parameter Mean (SD)
Intercept (β0) 2.166 (0.243)
t (β1) 1.471 (0.115)
t2 (β2) −0.186 (0.017)
homecog (β3) 0.041 (0.025)
t× homecog (β4) 0.019 (0.010)

I At baseline (t = 0), a 1-unit increase in homecog is associated with
a 0.041 point increase in reading score

I Effect of homecog increases with t

I But little change in between-individual variances/covariances (see

Practical)
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Reading progress by cognitive support at home
Predicted reading scores for quartiles of homecog
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Allowing for residual autocorrelation

So far occasion-level (time-varying) residuals eti have been
assumed independent. But we might expect residuals to be
correlated across occasions, especially if measurements are close
together in time.

A common autocorrelation structure is the 1st-order
autoregressive, AR(1), structure:

corr(eti , esi ) = α|t−s|

which, for |α| < 1, implies the correlation decays with time
difference |t − s|.
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AR(1) structure for reading data

For 4 measurements, the correlation matrix for (e1i , e2i , e3i , e4i ) is:
1
α 1
α2 α 1
α3 α2 α 1


Allowing for AR(1) autocorrelation therefore involves one
additional parameter α.

We can test for autocorrelation using a (frequentist) t-test of
H0 : α = 0.

If Bayesian estimation is used, can examine credible intervals.
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Reading model with AR(1) residuals

I Using Stata xtmixed the autocorrelation parameter α is
estimated as −0.291 with a standard error of 0.213 =⇒ we
cannot reject H0 : α = 0

I Using MCMC in Stat-JR α̂ = −0.327 (SE = 0.222). However
chains show poor mixing, which suggests model may not be
well identified.
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Random intercept model with AR(1) residuals

A flexible model (with random coefficients on time variables) may
sufficiently capture individual variation in trajectories, removing
need to allow for autocorrelation at occasion level.

Suppose we fit a quadratic for t but allow only the intercepts to
vary across children.

I Using xtmixed α is now estimated as 0.67 with a SE of 0.08,
so strongly significant

I Using MCMC in Stat-JR, α estimated as 0.693 (SD = 0.065)

I But we know that this simple model insufficiently captures
variation between children’s trajectories
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Handling highly variable trajectories

Growth curve models are most useful for developmental processes
(e.g. cognitive measures, height, weight).

Although they can be applied in any situation where the concept of
a ’trajectory’ is useful, the model may need to be extremely
complex to adequately represent change that is highly nonlinear
with large between-individual variation in the shape of trajectories.
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Observed trajectories in antisocial behaviour for 10 children

A low-order polynomial growth curve will not capture this
variation, even with random coefficients.
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Treating time as categorical: multivariate model

Include dummies for t in fixed part of model (t1, t2, t3, t4) and
estimate separate residual variance for each t.

readti = β0t1 + β1t2 + β2t3 + β3t4 + eti

where 
e0i
e1i
e2i
e3i

 ∼ N




0
0
0
0

 ,


σ2e0
σe01 σ2e1
σe02 σe12 σ2e2
σe03 σe13 σe23 σ2e3
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Means and covariances for antisocial behaviour

When modelling change, we aim to capture the means and
variances of yti at each t, and their covariances across t, as simply
as possible.

Variable Mean n
anti1 1.50 221
anti2 1.84 221
anti3 1.88 221
anti4 2.07 221

Sample covariance matrix (correlations in brackets)

anti1 anti2 anti3 anti4
anti1 2.37
anti2 1.16 (0.42) 3.21
anti3 1.22 (0.44) 1.63 (0.51) 3.24
anti4 1.35 (0.42) 2.00 (0.54) 2.24 (0.60) 4.35
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MCMC results from fitting multivariate model to antisocial
behaviour

Fixed part estimates

Parameter Mean (SD)
t1 (β0) 1.50 (0.11)
t2 (β1) 1.84 (0.12)
t3 (β2) 1.88 (0.12)
t4 (β3) 2.07 (0.14)

Random part estimates

Uniform Wishart
Param Mean (SD) Mean (SD)
σ2
e0 2.48 (0.25) 2.40 (0.23)
σe01 1.21 (0.21) 1.16 (0.20)
σ2
e1 3.36 (0.33) 3.25 (0.31)
σe02 1.28 (0.22) 1.23 (0.21)
σe12 1.70 (0.26) 1.64 (0.25)
σ2
e2 3.39 (0.34) 3.28 (0.32)
σe03 1.41 (0.25) 1.35 (0.24)
σe13 2.10 (0.31) 2.01 (0.29)
σe23 2.35 (0.32) 2.25 (0.30)
σ2
e3 4.55 (0.45) 4.38 (0.42)

The model perfectly reproduces the observed means. Var/cov estimates

sensitive to choice of prior; Wishart estimates closest to observed values.113



Notes on multivariate model

I Very flexible and allows for autocorrelation

I But flexibility means that we cannot discern any general
patterns in individual trajectories

I Equivalent to T − 1 polynomial (with no occasion-level
residual) - same number of parameters and likelihood value,
but multivariate model easier to interpret

I May be useful if trajectories are of limited interest and few
measurement occasions, e.g. if effects of time-varying x of
major interest
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4. Dynamic (Autoregressive) Models

115



Research questions about ’dynamic’ relationships

The growth curve approach is appropriate when interest centres on
trajectories in y over time, and how they differ across groups.

For some types of process, we might expect a direct dependency of
yt on previous y , e.g. earnings, depression.

We might also be interested in more dynamic questions, e.g.:

I How does health at t depend on a change in employment
status between t − 1 and t (adjusting for health prior to t)?

I How does starting a new treatment at t − 1 affect depression
at t (adjusting for earlier depression)?
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1st-order AR(1) dynamic model

The most commonly applied dynamic model assumes that yt
depends on past y through yt−1:

yti = δyt−1,i + βxti + ui + eti , t = 2, 3, . . . ,T

where ui ∼ N(0, σ2u) and eti ∼ N(0, σ2e )

I In practice we also include an intercept term in the model.
This is set to zero here for simplicity.

I δ commonly assumed to be equal across individuals

I ui can be treated as fixed rather than random (see brief
discussion later)
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State dependence vs unobserved heterogeneity

Residual correlation between yt and yt−1 is ρ = σ2u/(σ2u + σ2e ).

Is correlation between yt and yt−1 due to:

I Causal effect of yt−1 on yt?

⇒ |δ| close to 1 and ρ close to 0 (state dependence)

I Mutual dependence on time-invariant omitted variables?

⇒ |δ| close to 0 and ρ close to 1 (unobserved heterogeneity)
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Example of state dependence vs unobserved heterogeneity

E.g. Explanations for pattern of high income over time:

I Current income determined by past income

⇒ |δ| close to 1 and ρ close to 0 (state dependence)

I Dependence of income at all t on unmeasured characteristics
(qualifications, skills, ambition etc)

⇒ |δ| close to 0 and ρ close to 1 (unobserved heterogeneity)
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Endogeneity of lagged outcomes

yti = δyt−1,i + βxti + ui + eti , t = 2, 3, . . . ,T

A standard assumption of regression models is that residuals are
uncorrelated with explanatory variables (yt−1 and xt here):

cov(ui , yt−1,i ) = 0, cov(eti , yt−1,i ) = 0
cov(ui , xti ) = 0, cov(eti , xti ) = 0

Assumption that cov(ui , yt−1,i ) = 0 is especially problematic as:

yt−1,i = δyt−2,i + βxt−1,i + ui + et−1,i

yt−1 is said to be endogenous with respect to yt .
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Dependence of yt on earlier y for AR(1) model

Can show yt (t = 2, . . . ,T ) depends on earlier t entirely through
y1. Omitting covariates for simplicity:

y2i = δy1i + ui + e2i

y3i = δy2i + ui + e3i
= δ2y1i + (1 + δ)ui + δe2i + e3i

y4i = δy3i + ui + e4i
= δ3y1i + (1 + δ + δ2)ui + δ2e2i + δe3i + e4i

By repeated substitution, we find the effect of y1 on subsequent yt
is δt−1 which diminishes with t for |δ| < 1
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The ’initial conditions’ problem

As yt depends on previous y through y1, our assumptions about y1
are important.

y1 may not be measured at the start of the process

Can view as a missing data problem:

Observed (y1, . . . , yT )
Actual (y−k , . . . , y0,y1, . . . , yT )

where first k + 1 measures are missing.

We can allow for endogeneity of yt−1 by specifying a model for y1.
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Modelling y1

Our model for yt (t = 2, 3, . . . ,T ) is:

yti = δyt−1,i + βxti + ui + eti

A general model for y1 is:

y1i = γ0 + γ1x1i + vi + e1i
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Estimating the joint model for y1, y2, . . . , yT

We can combine the models for t = 1 and t ≥ 2 in one model.

Define t1 and t2T as dummies for t = 1 and t ≥ 2.

Form interaction variables t1x1i , t2T yt−1,i and t2T xti .

yti = t1{γ0 + γ1x1i + vi + e1i}
+ t2T{δyt−1,i + βxti + ui + eti}

This can be viewed as a multilevel model with level 2 random
coefficients for t1 and t2T and complex level 1 variance.

To recover the 2 equations, set (i) t1 = 1, t2T = 0 and (ii)
t1 = 0, t2T = 1.
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Identification of model with initial conditions

Some restrictions must be placed on the residuals vi and e1i in the
model for y1.

This is because we cannot separate between-individual and
within-individual variances for t = 1.

Possible approaches include:

1. Allow separate variances for e1i and eti (t > 1) but set vi = ui

2. Estimate variance of vi and its covariance with ui but set
var(e1i ) = var(eti ) for t > 1
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What if we ignore the initial conditions?

Suppose we do not model y1, and fit only the model for y2, . . . yT :

yti = δyt−1,i + βxti + ui + eti

I The estimate of δ will be biased upwards because we have
failed to allow for the shared dependency of yt and yt−1 on ui .

I The association between yt and yt−1 is partly due to
unmeasured time-invariant factors affecting y across time

I Estimates of covariate effects will also be biased if x
correlated with y at t and t − 1
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Application of AR(1) Model to
Antisocial Behaviour
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Results ignoring initial condition

antiti = β0 + δantit−1,i + β1malei + ui + eti , t = 2, 3, 4

Parameter Mean (SD)

antit−1 0.48 (0.09)
male 0.43 (0.15)
cons 0.87 (0.16)

Child-level variance (σ2u) 0.22 (0.27)
Occasion-level variance (σ2e ) 2.44 (0.24)

δ̂ = 0.48 (SD = 0.09) and σ̂2u = 0.22 (SD = 0.27) =⇒ state
dependence rather than unobserved heterogeneity.
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Models with initial condition

anti1i = γ0 + γ1malei + vi + e1i
antiti = β0 + δantit−1,i + β1malei + ui + eti , t = 2, 3, 4

Estimate two versions of model for y1:

1. Allow separate variances for e1i and eti (t > 1) but estimate a
common child-level random effect ui

2. Estimate variance of vi and its covariance with ui but assume
variance of occasion-level residual is same for all t

129



Results for alternative AR(1) models

No IC IC (1) IC (2)
Mean (SD) Mean (SD) Mean (SD)

antit−1 0.48 (0.09) 0.20 (0.05) 0.06 (0.06)
male 0.43 (0.17) 0.62 (0.17) 0.71 (0.20)
cons 0.87 (0.16) 1.26 (0.14) 1.45 (0.17)

Child level
var at t = 1 - - 0.96 (0.18) 0.83 (0.22)
var at t > 1 0.22 (0.27) 0.96 (0.18) 1.70 (0.32)
covariance - - - - 1.05 (0.20)

Occasion level
var at t = 1 - - 1.55 (0.19) 1.65 (0.11)
var at t > 1 2.44 (0.24) 1.97 (0.14) 1.65 (0.11)
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Comments on AR(1) results

I Effect of yt−1 overestimated and between-child variance (σ2u)
underestimated if initial condition ignored

I This impacts on the estimate for male

I Effect of yt−1 depends on how y1 is modelled (0.06 vs 0.20)
I But corr(ui , vi ) = 1.05/

√
0.83× 1.70 = 0.88 which suggests

model IC(2) is over-parameterised (2 extra parameters versus 1
extra for IC(1))

I In general, estimates can be sensitive to assumptions about
initial condition for short panels

I In a real application, model for y1 should include covariates x1i
that capture history of y up to t = 1 for better identification
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Application of AR(1) Model to Mental
Health and Employment
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Another example: Mental health and employment

Question: What is the effect of change in employment status on
subsequent mental health (adjusting for previous mental health)?

I Data from British Household Panel Study (25% sub-sample)

I 2808 men of working age observed annually for 2-18 years

I Mental health measured by General Health Questionnaire
(scores 0-36, mean = 10)

I Employment status at each wave: employed (E) or
non-employed (N)

I Focus on change in employment status between t − 1 and t:
EE, NN, EN and NE
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Model specification

GHQ1i = γ0 + γ1age1i + γ2age21i + γ3employ1i + vi + e1i

GHQti = β0 + δGHQt−1,i

+ β1empNNt−1,i + β2empENt−1,i + β3empNEt−1,i

+ β4ageti + β5age2ti + ui + eti , t = 2, . . . 18

I t = 1 corresponds to 1st wave of observation for an individual

I employ is a dummy for employment status at t = 1 (1=employed, 0=not
employed)

I empNN, empEN and empNE are dummies for change in employment

status between t − 1 and t: non-employed at both (NN), become

non-employed (EN) and become employed (NE). Reference category is

employed at both (EE)
134



Effects of GHQ and employment transitions for alternative
AR(1) models

No IC IC (1) IC (2)
Mean (SD) Mean (SD) Mean (SD)

GHQt−1 0.26 (0.01) 0.23 (0.01) 0.23 (0.02)
empNN 0.85 (0.10) 0.83 (0.10) 0.84 (0.10)
empEN 1.41 (0.13) 1.42 (0.13) 1.41 (0.13)
empNE −0.83 (0.13) −0.75 (0.15) −0.85 (0.13)

I Assumption about y1 has little impact in this long panel. Extended model
for y1 also included experience of unemployment up to t = 1 but
conclusions the same

I Compared to men who remain employed, being non-employed at both

waves or becoming non-employed is associated with higher depression

scores, while becoming employed is associated with lower depression
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