
eBook Writing Workshop – Practical 3: Using Supertemplates

and incorporating html outputs into eBooks.

Introduction
In this third practical we firstly are going to look at how we might construct an eBook that allows the

reader to fit multilevel models to their dataset. We could perform this using the skills we have

already learnt in practicals 1 and 2 by simply choosing a 2 level modelling template e.g. 2levelMod in

Stat-JR TREE and using the eBook-writer. There are, however, several post-estimation plots

associated with fitting multilevel models it would also be useful to include in an eBook. These are

available in other Stat-JR templates, which due to current limitations discussed in practical 2 cannot

be linked directly within the DEEP system. To use such plots in an eBook we require a super-

template that calls both the model fitting and plotting templates, passing the output from one as

input into the other. We will start by using the eBook-writer but will then look in a little detail at how

a super-template works and how we might modify it to include textual output.

Creating a Multilevel Modelling eBook
To fit multilevel models in Stat-JR’s TREE interface there are several templates including 2LevelMod,

which fits 2 level random intercepts models, and 2LevelRS, which fits 2 Level random slopes models

(with random intercepts as a special case). These templates simply fit the model and return

estimates along with residuals and predictions in the form of data files. We have therefore

constructed a super template called 2LevelPredictAll which combines the model-fitting with

graphical outputs by chaining together templates. We will begin by creating an eBook using only this

super template. As with the other practicals, we begin by starting up Stat-JR TREE afresh which

produces the following:

We click Begin and select the dataset jspmix1 (here you will choose your own dataset) from the

Dataset pull-down list and select the template 2LevelPredictAll from the Template pull down list.

Having done this the screen will look as follows:

Here we require the response and predictor (explanatory) variables as we have seen for regression

models previously, although in this case the intercept column is specified separately. We then

require the column containing the level 2 identifiers and the distribution type (which we will here

choose as Normal). We are also asked about random slopes as the super-template has different

behaviour based on this. We will fill in the inputs as follows:

This super-template is currently intended for demonstration purposes only so, for example, it

doesn’t ask for the (MCMC) estimation engine settings but uses some defaults. Here I am trying one

binary predictor (sex) and one continuous predictor (ravens) and, for now, running a simple random

intercepts model. We suggest you choose two predictors in your own dataset. Clicking on Run will

run the super-template and eventually the timer will return to the green “Ready” state and the

object list will be filled. The Python script that makes up much of the code for the template is what

you will initially see in the object browser. If we pop it out then we can see the code (here scrolled

down from the top by a few lines):

You may notice towards the top of the screen that the estimation inputs that have been hard-wired,

so for example this template always runs 3 chains (nchains) for 2000 iterations. The individual

templates that make up the super-template are called via the RunStatJR command within the

Python code, so here we can see both the 2LevelRS template and the Calculate template called in

the code. We use the identifier m to store the list of objects that are output from each template

execution and these are then uniquely named and copied into the global super-template objects list

via the outputs object.

We will now look at some of the objects that are returned by the super-template. If we want to look

at the model we have fitted then we choose the object Model_equation.tex and see:

In fact all objects generated by the template 2LevelRS will begin with the string Model_, for example

the parameter estimates are Model_ModelParameters as shown below:

Here we see (by looking at the mean and sd columns and comparing the values) that the predictors

sex and ravens are both significant predictors of english. We can also look at prediction plots, so for

example the object Graph_0_graphxygroup.svg is the plot of the individual cluster (school in this

case) lines against gender for the predictor sex as shown below:

Here the lines are all parallel as we are fitting a random intercept model, and they have a negative

slope due to the negative sex effect. We can also look at the school-level residuals in a caterpillar

plot by selecting Caterpillar_0_caterpillar.svg

This shows the variability in the schools and you will note that some of the confidence intervals do

not overlap with 0 which will explain why it is important to fit the school effects in the model. Let’s

now try and put some of these objects into an eBook. Scrolling up a bit we can find the Add to

ebook button and click on it to start writing our eBook. We firstly fill in the top level information:

We will then click on Add Region and Add Page and start the eBook off with a HTML box and the

opportunity for the user to input their settings as shown below:

In this case we are allowing the user to only choose a random intercept model (by not including the

randslope input which will then be fixed at No as we specified in TREE). We also have decided to

only allow the reader to input which predictors to test (x) as this is the only ticked input. We will

next write a second page with the equations and the results (both estimates and fit statistics) by

clicking Add next to Page and filling in the details as shown overleaf, where we add 2 HTML boxes

with a resource after each of them:

Next we demonstrate the model predictions by adding in a third page with those objects (again two

HTML boxes followed by resources) as shown below:

Finally for now we will add a fourth page and include the caterpillar plot thus:

We have now finished our eBook and we can now download this eBook by clicking on the Download

as eBook button and saving the eBook as practical3.zip.

Viewing our first eBook
Having created our zip file we are now ready to view our first eBook of this practical. If we load up

the Stat-JR DEEP system we will be greeted by the familiar screen:

We will select Import and find practical3.zip. Having imported the ebook we can click on it and it will

appear in the list and we can then set up a reading process:

We click on Start Reading and are greeted by the first screen and the input box:

Here I will (for variety) choose behaviour and fluent (as shown above) as explanatory variables but

you can choose appropriate predictors from your own dataset. We then click on Submit and DEEP

will say “Running Python Script” in the timer in the top-left before eventually saying “Finished”. The

results can then be seen on the pages 2 through to 4 with page 2 appearing thus:

Here in the results we see that behaviour and fluent are both significant predictors and positive

effects and this is backed up by the prediction graphs shown on page 3:

We see behaviour here but we can also scroll down to see fluent. Finally on page 4 is the caterpillar

plot:

As in previous practicals if you have TREE still open you can now add more material to the eBook and

create a longer eBook. One possibility would be to use the same template but fit a random slopes

model and create the same four pages for this model. We could perhaps include an additional page

with pairwise residual plots as we now have both intercept and slope residuals. Rather than

laboriously talk you through this in detail we leave it as an exercise (if you have time) and instead

show the output of our attempt which uses a second activity region.

Random slopes screens
Below are the additional pages that I have personally added to extend the eBook. Please try this

yourself and see how you get on:

Here is the input screen for the random slopes model where I have allowed the user to include both

explanatory variables (x) and those random at level 2 (x2) (page 5):

Here we have chosen the predictors sex and ravens for both inputs. Next we see on page 6 the

model equations and estimates for this random slopes model:

On page 7 we have the prediction lines (note they cross which is now possible as the model is a

random slopes model!)

Here are the caterpillar plots (and if you scroll down there are now three sets, for the intercepts, sex

effects and the ravens effects respectively):

Finally here are some pairwise residuals (again three plots) with first the intercepts (u0) against the

sex effects (u1).

This nine page eBook should now be a fairly powerful tool that you can use to investigate as many

predictions as you like.

HTML output objects in Templates
One other feature that we might like to incorporate into an eBook is for text that is specific to the

user’s choice of inputs to appear in an eBook. We will firstly show how this might be achieved in the

context of the multilevel modelling examples that we have looked at so far. If we return to the Stat-

JR TREE environment you will notice that in the template list is a similarly named template

2LevelPredictallws. In fact we have written this template specifically for the workshop and if you

were to look at the code you would see the following additional lines have been added:

if not randslope:

 l2var = m.eng.outputs['ModelResults'].content['paramstats']['mean']['sigma2_u']

 l1var = m.eng.outputs['ModelResults'].content['paramstats']['mean']['sigma2']

 html = '<p>'

 html += 'The Variance partition coefficient (VPC) is the percentage of variability that is

explained by differences between '

 html += 'level 2 units. In this case '

 html += 'VPC = ' + str(round(l2var,3)) + "/(" + str(round(l1var,3)) + "+" +

str(round(l2var,3)) + ") = " + str(round(l2var/(l1var+l2var),3)) html += '</p>'

 outputs['vpctext'] = HTMLOutput(html, description = 'Variance partition coefficient')

Here the code is run in the super-template after the first model-fitting and will only be run if the

model is a random intercepts model. If it is run we first interrogate the ModelResults object to

retrieve the estimates for the level 1 and level 2 variances,and then construct the string of text that

we wish to be a HTML output. You will see that lines of code build up the string assigned to the

object called html. If we wish to include actual text then we place it within quotes (single or double)

whilst for numerical values or formulas we place them in brackets within a str call – note we also use

the round function to limit all numbers to 3 decimal places. You’ll notice as we are constructing a

piece of HTML text that it is all housed with the <p> and </p> tags to indicate a single paragraph. In

the final line we add this object, with name vpctext, to the output object list.

If we use this template in TREE then we can set up inputs as earlier:

If we click Run we can then hunt the list of objects and find vpctext; clicking on it we will see the

following:

With regard to eBooks this object can be added in the same way as others through the eBook writer.

It will appear in the eBook as you see above i.e. as text within a box. We will not here add it to the

eBook but instead, to finish up the workshop, demonstrate a couple of more basic statistics

templates that might be of interest and which demonstrate somewhat more conditional text.

Basic Statistics Templates
When developing Stat-JR we have spent a lot of time pushing the boundary in terms of statistical

methodology development and have created a new estimation engine along with templates that fit

models that cannot be fitted in other software. Of course, in terms of a teaching tool, many users

will be more interested in the more standard basic statistical functionality. To this end we have

written two more basic statistics templates BasicStats and BasicStatsCat. These templates make

much use of the HTML output objects that we saw in the last example. The BasicStats template is

designed to be used with a continuous variable and preferably with a small dataset. Here we will use

the rats dataset (although if you have a small dataset yourself you might like to use it instead). The

rats dataset consists of the weights of 30 rats measured on 5 weekly occasions from when they were

aged 8 days old. We will therefore continue to use Stat-JR TREE but choose BasicStats as the

template and rats as the dataset. I have then chosen the inputs as follows (but feel free to

experiment):

Here we are going to look at the first set of weights, expecting 5 histogram bins (130-140, 140-150,

150-160, 160-170 and 170-180). When we click on Run the template executes almost

instantaneously and we can view the objects it has created in the object browser.

Firstly if we look at meantext we see (after popping out):

Here you see a textual explanation of how the mean of the variable is calculated along with the

mathematics of the calculation. We can see here already that with just 30 observations this is a little

cumbersome hence the advantage of small samples. We can next look at the mediantext (again

after popping out):

Here we have tried to explain in great detail how the median is calculated by showing how we sort

the observations before finding the middle observation. The object histtext gives a description of

how one would construct a histogram by hand by identifying the bins and then counting

observations in each thus:

We have then tuned the histogram drawing facilities as shown in histogram.svg so that the exact

same bins are plotted in the graph as we see in text above.

There are also textual outputs for measures of spread (iqrtext and sdtext) which can be investigated.

While we haven’t actually constructed an eBook you should feel confident that if you wanted to

make a basic statistics eBook then armed with this template and the eBook writer that will be a fairly

easy task.

A Chi-squared template
The second basic statistics template is designed for looking at categorical predictors and in fact will

perform a chi-squared test for a pair of categorical predictors. We will return to our original jspmix1

dataset here and choose the template BasicStatsCat but if your own dataset has more than one

categorical predictor then please try your own dataset. jspmix1 has a few categorical variables (sex,

behaviour, fluent and in theory school although it has probably too many categories to really want

to be tested via a chi-squared test).

If we choose sex and behaviour for our two variables then the screen will look as follows:

If we next Run the template then it will create a couple of smaller textual outputs but the main

output is called chisq which we can choose and popout as we see below:

Here the output shows how we tabulate the dataset and then create expected counts, ending up

with a test statistic. It then compares the values with a chi-squared table and, depending on the

outcome, rejects or fails to reject the null hypothesis. Although this is already quite a comprehensive

summary of a chi-squared test it is still to some degree proof of concept and for example might

benefit from stating what the hypotheses are for testing. Of course the beauty of the Stat-JR system

is that you have access to the code and so can modify the templates if you wish. Whilst we will not

inspect the code in detail, if you look at the template file you will nevertheless see that it largely

consists of creating the HTML code to produce the text and tables you see in the above table. The

tables are produced using tabular tags in html and for loops are used within Python to cope with the

potential for differing numbers of categories. If statements are used to allow conditional output: for

example displaying different text if the P value is significant or not. Although the prospect of writing

this code from scratch might seem rather daunting you might like to play around with the BasicStats

template and see how you can change the look and feel of the output. Note here it is sensible to first

save the template to a different name.

In a one day workshop we have only really scratched the surface of what is possible with the Stat-JR

system. We nevertheless hope we have shown you that writing ‘simple’ eBooks is fairly easy to pick

up and a useful skill to have with potential use for your research and/or teaching. We hope also that

you have seen that some aspects of eBook-writing are much less straightforward and we would very

much appreciate your input here as we continue to develop our eBook writing system and its

successor. In particular if you identify functionality that (i) you would like to be available and (ii) you

would like to be easier to implement yourself perhaps through tools like the eBook writer then we’d

like to hear from you.

