
Welcome to an SAA for fitting many model
types developed for Stat-JR v1.0.5
Input questions
Firstly on this page you will need to specify the dataset required from the list of
available datasets.

Next you need to choose many options including the response, estimation method,
clustering variables and predictor variables (both continuous and categorical) from
the chosen dataset. After choosing these variables the SAA will run and you will
see a block of text describing how many observations are to be used at the bottom
of this page. The rest of the analysis will appear in pages 2-12.

SAA for many N level multilevel
models

Which dataset do you wish to use:  

Submit

What estimation method do you
want to use:

IGLS

What is the response variable: use

What distribution are you going to
assume:

Binomial

Which column contains the
denominators:

cons

What link function do you wish to
use:

logit



Please enter your possible (nested)
classifications / levels (lowest first,

not including level-1):

cons

Are there any continuous predictors
that need including in all models:

No

Are there any categorical predictors
that need including in all models:

No

Do you want to include any
continuous predictors as candidates

for inclusion in the models:

Yes

Which continuous predictors do you
want to consider:

age

Do you want to include any
categorical predictors as candidates

for inclusion in the models:

Yes

Which categorical predictors do you
want to consider:

lc

What selection type do you require: Forward pass

Do you want to test for random
slopes:

No

Do you want to test for interactions: No

The Analysis Assistant you are currently using is designed to work on complete
datasets only and so as a pre-processing step we have to remove any rows that
contain missing data in columns used in the analysis that follows. For now the list



On the next page we will look at the shape of the response and, in the case of
normal responses, decide whether to log transform.

of columns to be considered is: use, cons, cons, age, lc. There are 0 (0.0%) rows
that get deleted This results in a dataset of 1934 rows.



Exploring the response
We will begin our analysis of the dataset by doing some basic data exploration.

You have chosen use as your response variable and so a first step is to take a look
at this variable and assess its suitability for modelling. The summary statistics for
the variable are in the table below:

Observations 1934

Mean 0.392

Standard Deviation 0.488

Median 0.0

We also look at a histogram of use to see what it looks like - noting that for a
Binomial model this is of less interest as it will simply look like a bar graph.

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.441. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 are not considered too big a skew.

There are no obvious outliers in use.



Exploring the predictors individually
We can also look at each of the predictor variables in turn in isolation.

For categorical predictors we are looking at how common each category is in the
dataset. In particular we are checking for rare categories which might cause
difficulties in modelling and might therefore be usefully merged with other
categories (though this would need to be done outside this SAA).

For predictor lc we see the following:

lc N Percentage

0 530 27.404

1 354 18.304

2 307 15.874

3 743 38.418

Total 1934 100

None of the categories of lc have fewer than 5 observations.



For continuous predictors we are interested in looking at summary statistics, the
shape of the distribution and any unusual values. If the distribution is skewed then
we might want to transform the variable before fitting it in the model although it is
more important to consider transformations of the response variable and remember
what is important is whether the relationship between the response and predictor is
linear. If there are unusual values we will want to check that the unusual values are
correct and not errors and also whether we may want to treat the variable
differently. Another possibility for unusual shaped distributions is to instead
categorise the variable into ranges of values.

For predictor age we see the following:

Name age

Observations 1934

Mean 0.002

Standard Deviation 9.011

Median -1.56

Here the median is smaller than the mean and there is significant skew to the right.
The skewness value is 0.441. Here the statistical significance may be to some
degree due to the large sample size as from a practical perspective values of skew
less than 2 in absolute magnitude are not considered too big a skew.



There are no obvious outliers in age.



Assessing the relationship between the response and
individual predictors
Once we are happy with our response variable and our set of predictors we now
want to have a preliminary look at them together before progressing to the
univariable modelling.

For the categorical predictors it is worth tabulating the response for each category
to look at whether patterns differ. We can formally test this with a chi-squared test.

We will investigate categorical variable lc. To do a chi-squared test we start by
tabulated observed counts and totals:

Observed use=0 use=1 Total

lc=0 397 133 530

lc=1 190 164 354

lc=2 160 147 307

lc=3 428 315 743

Total 1175 759 1934

We can therefore work out the expected counts from the margins of the observed
data.

And so we expect

E(use = 0, lc = 0) = Total use = 0 * Total lc = 0 / grand total = 1175 * 530 / 1934 =
322.0.  
E(use = 1, lc = 0) = Total use = 1 * Total lc = 0 / grand total = 759 * 530 / 1934 =
208.0.  
E(use = 0, lc = 1) = Total use = 0 * Total lc = 1 / grand total = 1175 * 354 / 1934 =
215.07.  
E(use = 1, lc = 1) = Total use = 1 * Total lc = 1 / grand total = 759 * 354 / 1934 =
138.93.  
E(use = 0, lc = 2) = Total use = 0 * Total lc = 2 / grand total = 1175 * 307 / 1934 =
186.52.  
E(use = 1, lc = 2) = Total use = 1 * Total lc = 2 / grand total = 759 * 307 / 1934 =
120.48.  
E(use = 0, lc = 3) = Total use = 0 * Total lc = 3 / grand total = 1175 * 743 / 1934 =



451.41.  
E(use = 1, lc = 3) = Total use = 1 * Total lc = 3 / grand total = 759 * 743 / 1934 =
291.59.  

So the table of expected counts is:

Expected use=0 use=1 Total

lc=0 322.0 208.0 530.0

lc=1 215.07 138.93 354.0

lc=2 186.52 120.48 307.0

lc=3 451.41 291.59 743.0

Total 1175.0 759.0 1934.0

We next look at differences between what we observe and expect in each cell. We
square these values so that every difference is positive and scale by the expected
counts so that more frequently expected cells aren�t overly influential. So for
example for use=0, lc=0 (O-E)^2/E = (397-322.0)^2/322.0=17.47. This statistic is
shown in tabular form below:

(O-E)^2/E use=0 use=1

lc=0 17.47 27.04

lc=1 2.92 4.52

lc=2 3.77 5.84

lc=3 1.21 1.88

The test statistic for a chi-squared test is found by summing the values of this table
so:

Chisq=17.47+27.04+2.92+4.52+3.77+5.84+1.21+1.88=64.66.

This is compared with a chi-squared table with degrees of freedom = (number of
columns -1)x(number of rows - 1) =

(4-1)x(2-1)=3.

Looking up the chi-squared table the value for p=0.05 is 7.81 and for p=0.01 =
11.34



As 64.66 > 11.34 our p value is less than 0.01 and we have strong evidence to
reject the null hypothesis (at the p=0.01) level.

The p-value is in fact less than 0.0001.

For the continuous predictors it is worth looking at the mean value of each predictor
for the 0 and 1 responses to assess if there is any difference. We can formally test
this with a t-test.

Here is a tabulation of the predictor, age for response use with category 1 having
the largest mean and category 0 the smallest.

Category N Mean Standard Deviation Median

0 1175 -0.208 9.707 -1.56

1 759 0.327 7.802 -0.56

The formal test is as follows:

There are two groups in the data:  
The first group has 1175 observations with mean -0.208 standard deviation 9.711.  
The second group has 759 observations with mean 0.327 standard deviation
7.807.  
We are trying to test a hypothesis as to whether the two groups differ in their
(population) means by a statistically significant amount. Statistical significance is
related to how likely a result is to be a chance occurance. Here we are trying to
differentiate between a real difference (no matter how small) and a difference that
may have occurred due to the samples we have chosen.  
The mean difference is 0.534 with the second group having the larger sample
mean.  
We need to quantify if this difference is large relative to the variability in the data. To
do this we calculate the standard error of the difference. This is a function of the
variabilities in the samples from group A and group B combined with their sample
sizes. The bigger the 2 variabilities the larger the standard error, whilst the smaller
the variability the smaller the standard error.  
For our data the standard error of the mean difference is 0.401 and we divide our
observed difference by this standard error to give a test statistic with value 1.334.  
This test statistic is then compared to a t distribution with degrees of freedom equal
to the sum of the sample sizes in each group (1934) - 2. In this case a t distribution
with 1932. This t table has values of 1.961 for p=0.05 and 2.578 for p=0.01.

As our test statistic is 1.334 < 1.961 this means that the p value is > 0.05 and so
we cannot reject the null hypothesis.



The p-value is in fact 0.1825. .

The t test assumes that the distribution of the response in each group follows a
Normal distribution. We could check this by looking at histograms of the variable in
each group. If we were concerned about the normality assumption then we could
instead use a Mann Whitney (MW) test.

A Mann Whitney test works simply on the order (or ranks) of the responses across
the two groups. So the response variable is firstly sorted and then each value is
ranked. The ranks for each group are then summed and the value that is larger is
compared with what would be expected if there was no difference between the
groups.

In this case the MW U statistic is 413204 which for samples of size 1175 and 759
corresponds to a p value of 0.0127.



Choosing appropriate random classifications
We begin this section by deciding which of the possible random classifications to
include in the modelling.

This is done by fitting combinations in turn and picking more complicated models if
they make a significant improvement via a Wald test. All models are displayed
along with their chi-squared test statistic in the table below:

Higher-level classifications Significance

cons nan

The best model based on the Likelihood has levels:

As this is a multilevel modelling SAA we will also want to look at how the response
is distributed across the levels of the model.

For this we will use the best model chosen above and look at how the variance is
distributed across levels.

Variable Coefficient SE

Intercept -0.437 0.0466



Performing univariable modelling
Our next step in modelling now that we have a set of potential predictors is to
consider models for each predictor in turn along with a random intercept at each
chosen classification from the best model in the last section. In the fixed part these
models simply contain an intercept and the particular predictor and so for
continuous predictors will be multilevel linear regressions and for categorical
predictors will be multilevel generalisations of ANOVAs. In the table below we
summarise the modelling by showing the coefficients for each predictor along with
the p value comparing the model with that predictor with a Null model. This
Univariable modelling step will identify a set of candidate predictors to be taken
forward into the next stage of modelling.

Variable Coefficient SE p value Significance

age 0.00657 0.00516 0.203 N/S

lc_1 0.946 0.146 < 0.001 ***

lc_2 1.009 0.152

lc_3 0.787 0.125

Which predictors we consider for the next stage of analysis will depend on their
significance in the above table (but may in practice also depend on the size the
effect and substantive interest of the variable though this is hard to automate). We
will use a threshold on the p values associated with the predictors to decide
whether to include the predictors in the next stage. Here we are currently using a
threshold of 0.05. so the predictors to carry forward are: lc.





Looking at correlations between predictors
Our next step is to check that none of the correlations between the predictor
variables are too great as this could cause estimation problems when we add the
predictors to the model together. To do this we look at all correlations between the
predictor variables that have been identified as significant univariably and are thus
candidates to be added to the model.

The correlations are as follows:

Variables Correlation

(lc_1, age) -0.206

(lc_2, age) 0.013

(lc_2, lc_1) -0.206

(lc_3, age) 0.632

(lc_3, lc_1) -0.374

(lc_3, lc_2) -0.343

Correlations greater than 0.8 (in magnitude) are worth looking at as they may result
in model fitting problems when both predictors are included.



Performing multivariable model selection - random
intercept models
In this next stage we will look at the best random intercepts model using only main
effects for the variables to be considered. You have chosen to perform forward
pass which is a quicker method than full forward selection. It may therefore not
explore as many possible models. The predictor variables are considered in turn
based on their significance in the univariable analysis and each is added to the
current model. If the resulting model is a significant improvement then the predictor
is kept in the model otherwise it is removed. Attention then moves on to the next
predictor until all predictors are considered.

You have chosen to use Wald tests to compare models. These work by looked at
estimates and standard error matrices for each predictor to assess significance and
run quicker than the alternative methods as they do not need to run submodels.

The most significant predictor in the univariable analysis was lc so our starting point
in multivariable modelling is the model:

Variable Coefficient SE p value Significance

lc_1 0.946 0.146 < 0.001 ***

lc_2 1.009 0.152

lc_3 0.787 0.125

Intercept -1.094 0.1

Adding variable lc was a significant improvement and so we retain it in the model.

Our next step is to consider adding variable age to the current model.

∼ Binomial( , ), logit( ) =usei consi pi pi β0lc_1i+β1lc_2i+β2lc_3i

+β3intercepti

∼ Binomial( , ), logit( ) =usei consi pi pi β0lc_1i+β1lc_2i+β2lc_3i

+β3agei+β4intercepti



Variable Coefficient SE p value Significance

lc_1 1.031 0.15 < 0.001 ***

lc_2 1.184 0.164

lc_3 1.112 0.168

age -0.0217 0.00741 0.003 **

Intercept -1.264 0.117

Adding variable age was a significant improvement and so we retain it in the model.

This is our final model.



Choosing interactions
You have chosen not to investigate interactions and so this page is empty.



Adding random slopes
You have chosen not to look at random slopes and so this page is blank.



Analysing the residuals
Here we look at the residuals from the model and plot them in various ways.



Looking at predictions
Having fitted a model with several predictors we might like to represent this model
graphically. This is more difficult than when we have only one predictor and so for
now we consider each predictor in turn and set all other predictors to their mean
values.


